Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biosci ; 472022.
Artículo en Inglés | MEDLINE | ID: mdl-35092407

RESUMEN

In Volume 46 of the Journal of Biosciences, in the article titled 'A cost-effective and efficient approach for generating and assembling reagents for conducting real-time PCR' by Ridim D Mote, V Shinde Laxmikant, Surya Bansi Singh, Mahak Tiwari, Hemant Singh, Juhi Srivastava, Vidisha Tripathi,Vasudevan Seshadri, Amitabha Majumdar and Deepa Subramanyam, published on 27 November 2021 (https://doi.org/10.1007/s12038-021- 00231-w), the second author's name was incorrectly set as V Shinde Laxmikant. The correct name should read as Shinde Laxmikant V.

2.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-34845993

RESUMEN

Real-time PCR is a widely used technique for quantification of gene expression. However, commercially available kits for real-time PCR are very expensive. The ongoing coronavirus pandemic has severely hampered the economy in a number of developing countries, resulting in a reduction in available research funding. The fallout of this will result in limiting educational institutes and small enterprises from using cutting edge biological techniques such as real-time PCR. Here, we report a cost-effective approach for preparing and assembling cDNA synthesis and real-time PCR mastermixes with similar efficiencies as commercially available kits. Our results thus demonstrate an alternative to commercially available kits.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Benzotiazoles , Diaminas , Indicadores y Reactivos , Quinolinas , Reacción en Cadena en Tiempo Real de la Polimerasa/economía
3.
Nanoscale Adv ; 3(7): 2030-2038, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133080

RESUMEN

Hybrid carbon nanostructures based on single walled carbon nanotubes (SWNTs) and single layer graphene (SLG) have drawn much attention lately for their applications in a range of efficient hybrid devices. A few recent studies, addressing the interaction behavior at the heterojunction, considered charge transfer between the constituents (SWNTs and SLG) to be responsible for changes in the electronic and vibrational properties of their hybrid system. We report the effect of various factors, arising due to the interactions between the atoms of SWNTs and SLG, on the structural and vibrational properties of hybrid nanostructures investigated computationally within the framework of tight-binding DFT. These factors, such as the van der Waals (vdW) forces, structural deformation and charge transfer, are seen to affect the Raman active phonon frequencies of SWNTs and SLG in the hybrid nanostructure. These factors are already known to affect the vibrational properties of SWNTs and SLG separately and in this work, we have explored their role and interplay between these factors in hybrid systems. The contribution of different factors to the total shift observed in phonon frequencies is estimated and it is perceived from our findings that not only the charge transfer but the structural deformations and the vdW forces also affect the vibrational properties of components within the hybrid, with structural deformation being the leading factor. With decreasing separation between SWNTs and SLG, the charge transfer and the vdW forces both increase. However, the increase in vdW forces is relatively much higher and likely to be the main cause for larger Raman shifts observed at smaller separations.

4.
J Chem Phys ; 155(24): 244104, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34972369

RESUMEN

Hybrid carbon nanostructures based on the sp2 hybridized allotropes of carbon, such as graphene and single-walled carbon nanotubes (SWCNTs), hold vast potential for applications in electronics of various forms. Electronic properties of such hybrid structures are modified due to the interaction between atoms of the components, which can be utilized to tailor the properties of the hybrid structures to suite the application. In this study, we have explored charge (electron) transport through the hybrid structures of single-layer graphene (SLG) and SWCNTs (both metallic and semiconducting) using the nonequilibrium Green's function formalism within the framework of tight-binding density functional theory. Our calculations show that the electronic transport in hybrid nanostructures is affected by the interactions between SWCNT and SLG in comparison to the individual components. The changes in the electronic structure and the transport properties with increasing interaction in hybrids (captured by decreasing the separation between SWCNT and SLG) are discussed, and it is demonstrated from this analysis that the hybrids with semiconducting SWCNTs and metallic SWCNTs show different behavior in the low bias regime while they show similar behavior at higher biases. The difference in the transport properties of hybrids with semiconducting and metallic SWCNTs is explained in terms of changes in the electronic structure, the local density of states, and the energy dispersion for electrons due to the interaction between atoms of the two components.

5.
J Biomater Sci Polym Ed ; 31(13): 1648-1670, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32402230

RESUMEN

In this study, poly(ε-caprolactone) (PCL) has been blended with a more hydrophilic poly(ethylene glycol) (PEG) and with a biocompatible block-co-polymer: poly(L-lactide-co-ε-caprolactone-co-glycolide) (PLCG) in order to improve hydrophilicity, biocompatibility and biodegradability of PCL. PCL and the blend solutions were subjected to electrospinning to produce nanofiber scaffolds by the addition of only 1 wt% of PEG and PLCG either singly or in combination in PCL to retain the mechanical properties of the scaffolds. PCL-PEG-PLCG ternary and two binary (PCL-PEG and PCL-PLCG) blend nanofiber scaffolds have been prepared for comparison. The resulting nanofibers showed a smooth and flaw-free surface and the diameter of the nanofibers displayed a normal distribution. The PCL-PEG nanofiber scaffold showed improved hydrophilicity [water contact angle (WCA) ∼84°] over pristine PCL (WCA ∼127°); while PCL-PLCG and PCL-PEG-PLCG scaffolds exhibited absolute wetting by water, likely due to high porosity. In vitro biocompatibility studies using gingival mesenchymal stem cells (gMSCs) suggested that, both the PCL and the blend scaffolds were biocompatible supporting cell-viability and growth of gMSCs following their seeding on these scaffolds. Biodegradation studies in phosphate buffer solution showed that the addition of PEG and PLCG in PCL increased the weight loss of scaffolds with time, indicating higher extent of biodegradation in the blend scaffolds and the weight loss followed the power law curve with time.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Caproatos , Dioxanos , Interacciones Hidrofóbicas e Hidrofílicas , Lactonas , Poliésteres , Polietilenglicoles , Andamios del Tejido
6.
Biosens Bioelectron ; 145: 111698, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539652

RESUMEN

Mycobacterium leprae causes endemic disease leprosy which becomes chronic if not treated timely. To expedite this 'timely diagnosis', and that also at an early stage, here an attempt is made to fabricate an epitope-imprinted sensor. A molecularly imprinted polymer nanoparticles modified electrochemical quartz crystal microbalance sensor was developed for sensing of Mycobacterium leprae bacteria through its epitope sequence. Multiple monomers, 3-sulphopropyl methacrylate potassium salt, benzyl methacrylate and 4-aminothiophenol were utilized to imprint this bacterial epitope. Imprinted nanoparticles were electropolymerized on gold coated quartz electrode. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with two amino acid mismatches were also unable to show any binding. Sensor withstood analytical tests viz. selectivity, specificity, matrix effect, detection limit (0.161 nM), quantification limit (and 0.536 nM), reproducibility (RSD 2.01%). Hence a diagnostic tool for bacterium causing leprosy is successfully fabricated in a facile manner which will broaden the clinical access and efficient population screening can be made feasible.


Asunto(s)
Técnicas Biosensibles , Lepra/diagnóstico , Mycobacterium leprae/aislamiento & purificación , Tecnicas de Microbalanza del Cristal de Cuarzo , Epítopos/química , Epítopos/inmunología , Oro/química , Humanos , Lepra/microbiología , Impresión Molecular , Mycobacterium leprae/inmunología , Mycobacterium leprae/patogenicidad , Nanopartículas/química , Polímeros/química
7.
Adv Exp Med Biol ; 1008: 283-323, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815544

RESUMEN

It is estimated that more than 90% of the mammalian genome is transcribed as non-coding RNAs. Recent evidences have established that these non-coding transcripts are not junk or just transcriptional noise, but they do serve important biological purpose. One of the rapidly expanding fields of this class of transcripts is the regulatory lncRNAs, which had been a major challenge in terms of their molecular functions and mechanisms of action. The emergence of high-throughput technologies and the development in various conventional approaches have led to the expansion of the lncRNA world. The combination of multidisciplinary approaches has proven to be essential to unravel the complexity of their regulatory networks and helped establish the importance of their existence. Here, we review the current methodologies available for discovering and investigating functions of long non-coding RNAs (lncRNAs) and focus on the powerful technological advancement available to specifically address their functional importance.


Asunto(s)
Genoma Humano/fisiología , Estudio de Asociación del Genoma Completo/métodos , ARN Largo no Codificante , Análisis de Secuencia de ARN/métodos , Transcripción Genética/fisiología , Animales , Humanos , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética
8.
Microbiol Res ; 158(3): 203-13, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14521230

RESUMEN

Selected isolates of Pseudomonas fluorescens (Pf1-94, Pf4-92, Pf12-94, Pf151-94 and Pf179-94) and chemical resistance inducers (salicylic acid, acetylsalicylic acid, DL-norvaline, indole-3-carbinol and lichenan) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. A marked increase in shoot and root length was observed in P. fluorescens treated plants. The isolates of P. fluorescens systemically induced resistance against Fusarium wilt of chickpea caused by Fusarium. oxysporum f.sp. ciceri (FocRs1), and significantly (P = 0.05) reduced the wilt disease by 26-50% as compared to control. Varied degree of protection against Fusarium wilt was recorded with chemical inducers. The reduction in disease was more pronounced when chemical inducers were applied with P. fluorescens. Among chemical inducers, SA showed the highest protection of chickpea seedlings against wilting. Fifty two- to 64% reduction of wilting was observed in soil treated with isolate Pf4-92 along with chemical inducers. A significant (P = 0.05; r = -0.946) negative correlation was observed in concentration of salicylic acid and mycelial growth of FocRs1 and at a concentration of 2000 microg ml(-1) mycelial growth was completely arrested. Exogenously supplied SA also stimulated systemic resistance against wilt and reduced the disease severity by 23% and 43% in the plants treated with 40 and 80 microg ml(-1) of SA through root application. All the isolates of P. fluorescens produced SA in synthetic medium and in root tissues. HPLC analysis indicated that Pf4-92 produced comparatively more SA than the other isolates. 1700 to 2000 nanog SA g(-1) fresh root was detected from the application site of root after one day of bacterization whereas, the amount of SA at distant site ranged between 400-500 nanog. After three days of bacterization the SA level decreased and was found more or less equal at both the detection sites.


Asunto(s)
Antifúngicos/farmacología , Cicer/microbiología , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Pseudomonas fluorescens/fisiología , Ácido Salicílico/farmacología , Cromatografía Líquida de Alta Presión , Cicer/crecimiento & desarrollo , Fusarium/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...