Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38802041

RESUMEN

Integration of novel compounds into biological processes holds significant potential for modifying or expanding existing cellular functions. However, the cellular uptake of these compounds is often hindered by selectively permeable membranes. We present a novel bacterial transport system that has been rationally designed to address this challenge. Our approach utilizes a highly promiscuous sulfonate membrane transporter, which allows the passage of cargo molecules attached as amides to a sulfobutanoate transport vector molecule into the cytoplasm of the cell. These cargoes can then be unloaded from the sulfobutanoyl amides using an engineered variant of the enzyme γ-glutamyl transferase, which hydrolyzes the amide bond and releases the cargo molecule within the cell. Here, we provide evidence for the broad substrate specificity of both components of the system by evaluating a panel of structurally diverse sulfobutanoyl amides. Furthermore, we successfully implement the synthetic uptake system in vivo and showcase its functionality by importing an impermeant non-canonical amino acid.

2.
Chembiochem ; 24(15): e202300191, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119472

RESUMEN

Chemical cell surface modification is a fast-growing field of research, due to its enormous potential in tissue engineering, cell-based immunotherapy, and regenerative medicine. However, engineering of bacterial tissues by chemical cell surface modification has been vastly underexplored and the identification of suitable molecular handles is in dire need. We present here, an orthogonal nucleic acid-protein conjugation strategy to promote artificial bacterial aggregation. This system gathers the high selectivity and stability of linkage to a protein Tag expressed at the cell surface and the modularity and reversibility of aggregation due to oligonucleotide hybridization. For the first time, XNA (xeno nucleic acids in the form of 1,5-anhydrohexitol nucleic acids) were immobilized via covalent, SNAP-tag-mediated interactions on cell surfaces to induce bacterial aggregation.


Asunto(s)
Escherichia coli , Ácidos Nucleicos , Escherichia coli/genética , ADN/química , Ácidos Nucleicos/química , Hibridación de Ácido Nucleico , Oligonucleótidos/química
3.
Sci Total Environ ; 865: 161119, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36581281

RESUMEN

Recent observations and climate change projections indicate that changes in rainfall energy, intensity, duration, and frequency, which determine the erosive power of rainfall, will amplify erosion rates around the world. However, the magnitude and scope of these future changes in erosive power of rainfall remain largely unknown, particularly at finer-resolutions and local scales. Due to a lack of available projected future sub-hourly climate data, previous studies relied on aggregates (hourly, daily) rainfall data. The erosivity for the southeastern United States in this study was calculated using the RUSLE2 erosivity calculation method without data limitation and a recently published 15-min precipitation dataset. This precipitation data was derived from five NA-CORDEX climate models' precipitation products under the Representative Concentration Pathway (RCP) 8.5 scenario. In this dataset, hourly climate projections of precipitation were bias-corrected and temporally downscaled to 15-min resolution for 187 locations with collocated 15-min precipitation observations. Precipitation, erosivity (R-factor), and erosivity density (ED) estimations were provided for historical (1970-1999) and future (2030-2059) time periods. Ensemble results for projected values (as compared to historical values) showed increase in precipitation, erosivity, and erosivity density by 14 %, 47 %, and 29 %, respectively. The future ensemble model showed an average annual R-factor of 11,237±1299 MJ mm ha-1h-1yr-1. These findings suggest that changes in rainfall intensity, rather than precipitation amount, may be driving the change in erosivity. However, the bias correction and downscaling limitations inherent in the original precipitation dataset and this study's analyses obscured this particular result. In general, coastal and mountainous regions are expected to experience the greatest absolute increase in erosivity, while other inland areas are expected to experience the greatest relative change. This study offers a novel examination of projected future precipitation characteristics in terms of erosivity and potential future erosion.

4.
Sci Data ; 9(1): 211, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577792

RESUMEN

Climate change impacts on precipitation characteristics will alter the hydrologic characteristics, such as peak flows, time to peak, and erosion potential of watersheds. However, many of the currently available climate change datasets are provided at temporal and spatial resolutions that are inadequate to quantify projected changes in hydrologic characteristics of a watershed. Therefore, it is critical to temporally disaggregate coarse-resolution precipitation data to finer resolutions for studies sensitive to precipitation characteristics. In this study, we generated novel 15-minute precipitation datasets from hourly precipitation datasets obtained from five NA-CORDEX downscaled climate models under RCP 8.5 scenario for the historical (1970-1999) and projected (2030-2059) years over the Southeast United States using a modified version of the stochastic method. The results showed conservation of mass of the precipitation inputs. Furthermore, the probability of zero precipitation, variance of precipitation, and maximum precipitation in the disaggregated data matched well with the observed precipitation characteristics. The generated 15-minute precipitation data can be used in all scientific studies that require precipitation data at that resolution.

5.
Sci Total Environ ; 821: 153180, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35051464

RESUMEN

This study explored how the characterization of forest processes in hydrologic models affects watershed hydrological responses. To that end, we applied the widely used Soil and Water Assessment Tool (SWAT) model to two forested watersheds in the southeastern United States. Although forests can cover a large portion of watersheds, tree attributes such as leaf area index (LAI), biomass accumulation, and processes such as evapotranspiration (ET) are rarely calibrated in hydrological modeling studies. The advent of freely and readily available remote-sensing data, combined with field observations from forestry studies and published literature, allowed us to develop an improved forest parameterization for SWAT. We tested our proposed parameterization at the watershed scale in Florida and Georgia and compared simulated LAI, biomass, and ET with the default model settings. Our results showed major improvements in predicted monthly LAI and ET based on MODIS reference data (NSE > 0.6). Simulated forest biomass also showed better agreement with the USDA forest biomass gridded data. Through a series of modeling experiments, we isolated the benefits of LAI, biomass, and ET in predicting streamflow and baseflow at the watershed level. The combined benefits of improved LAI, biomass, and ET predictions yielded the most optimal model configuration where terrestrial and in-stream processes were simulated reasonably well. We performed automated model calibration using two calibration strategies. In the first calibration scheme (M0), SWAT was calibrated for daily streamflow without adjusting LAI, biomass, and ET. In the second calibration scheme (MLAI+BM+ET), previously calibrated parameters constraining LAI, biomass, and ET were incorporated into the model and daily streamflow was recalibrated. The MLAI+BM+ET model showed superior performance and reduced uncertainties in predicting daily streamflow, with NSE values ranging from 0.52 to 0.8. Our findings highlight the importance of accurately representing forest dynamics in hydrological models.


Asunto(s)
Bosques , Hidrología , Georgia , Modelos Teóricos , Suelo , Árboles
6.
Sci Total Environ ; 812: 151425, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34748839

RESUMEN

Forests play a critical role in the hydrologic cycle, impacting the surface and groundwater dynamics of watersheds through transpiration, interception, shading, and modification of the atmospheric boundary layer. It is therefore critical that forest dynamics are adequately represented in watershed models, such as the widely applied Soil and Water Assessment Tool (SWAT). SWAT's default parameterization generally produces unrealistic forest growth predictions, which we address here through an improved representation of forest dynamics using species-specific re-parameterizations. We applied this methodology to the two dominant pine species in the southeastern U.S., loblolly pine (Pinus taeda L.) and slash pine (Pinus elliotti). Specifically, we replaced unrealistic parameter values related to tree growth with physically meaningful parameters derived from publicly available remote-sensing products, field measurements, published literature, and expert knowledge. Outputs of the default and re-parameterized models were compared at four pine plantation sites across a range of management, soil, and climate conditions. Results were validated against MODIS-derived leaf area index (LAI) and evapotranspiration (ET), as well as field observations of total biomass. The re-parameterized model outperformed the default model in simulating LAI, biomass accumulation, and ET at all sites. The two parametrizations also resulted in substantially different mean annual water budgets for all sites, with reductions in water yield ranging from 13 to 45% under the new parameterization, highlighting the importance of properly parameterizing forest dynamics in watershed models. Importantly, our re-parameterization methodology does not require alteration to the SWAT code, allowing it to be readily adapted and applied in ongoing and future watershed modeling studies.


Asunto(s)
Bosques , Pinus taeda , Hidrología , Suelo , Árboles
7.
Sci Total Environ ; 791: 148177, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118663

RESUMEN

In watersheds located in semi-arid regions, vegetation dynamics, evapotranspiration (ET), and associated water and energy balances collectively play a major role in controlling hydrological regimes and crop yield. As such, it is challenging to predict the complex hydrological processes and biophysical dynamics. This challenge increases in areas with limited data availability. The key objective of this study was to evaluate the direct integration of remotely sensed Leaf Area Index (LAI) data into a hydrological model to improve streamflow, ET, and crop yield estimates. We also demonstrated how an improved model integrated with remotely sensed LAI data can inform water managers by predicting water productivity (WP) under different irrigation schemes. We took agricultural-dominated San Joaquin Watershed in California, United States, as our testbed and integrated the Moderate Resolution Imaging Spectroradiometer (MODIS) 500-m resolution 4-day total LAI data into the SWAT (Soil and Water Assessment Tool) model. Results showed that, compared to conventional SWAT model that relies on semi-empirical equations and user inputs for simulating biophysical processes, direct LAI integration into SWAT model (SWAT-LAI) notably captured the actual vegetation dynamics and improved ET and crop yield estimations. The WP simulated by the improved SWAT-LAI model for almond and grape yields varied within a range from 0.363 to 3.81 kg/m3 and 0.32 to 4.76 kg/m3 across different irrigation applications. The outcomes of this study showed that deficit irrigation application could be a viable option in water stressed regions, since it can save a substantial amount of irrigation water and maintain the higher water productivity required for both almond and grape yield production. This study shows an evidence of how remotely sensed data integrated into hydrological models can serve as a decision support tool by providing quantitative information on crop water use and crop production.


Asunto(s)
Agricultura , Agua , Hidrología , Hojas de la Planta , Abastecimiento de Agua
8.
J Org Chem ; 84(21): 13394-13409, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31617362

RESUMEN

In this report, we present the synthesis of N8-glycosylated 8-aza-2-methylhypoxanthine and 8-aza-6-thiohypoxanthine 2'-deoxynucleosides as well as methylated 2'-deoxynebularine derivatives. In vitro base pairing properties between each modified and canonical nucleobase were studied. As demonstrated by Tm, incorporation of the modified bases in DNA resulted, with few exceptions, in low stability of duplexes. Modified bases studied in this report are preferentially recognized by T (for N8-glycosylated 8-aza-2-methylhypoxanthine and methylated purines) and G (N8-glycosylated 8-aza-2-methylhypoxanthine). The base pair formed between N8-glycosylated 8-aza-6-thiohypoxanthine and N9-glycosylated 2-methyl-6-thiohypoxanthine (X2:X6) showed, to some extent, an orthogonal interaction. Based on Tm studies, the only potential self-pairing system is formed by the N8-glycosylated 8-aza-6-thiohypoxanthine nucleoside (X2) but only in the absence of canonical G and T. This study indicated that the canonical thymine base is the preferential base partner of methylated purine bases.

9.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29728377

RESUMEN

The import of nonnatural molecules is a recurring problem in fundamental and applied aspects of microbiology. The dipeptide permease (Dpp) of Escherichia coli is an ABC-type multicomponent transporter system located in the cytoplasmic membrane, which is capable of transporting a wide range of di- and tripeptides with structurally and chemically diverse amino acid side chains into the cell. Given this low degree of specificity, Dpp was previously used as an entry gate to deliver natural and nonnatural cargo molecules into the cell by attaching them to amino acid side chains of peptides, in particular, the γ-carboxyl group of glutamate residues. However, the binding affinity of the substrate-binding protein dipeptide permease A (DppA), which is responsible for the initial binding of peptides in the periplasmic space, is significantly higher for peptides consisting of standard amino acids than for peptides containing side-chain modifications. Here, we used adaptive laboratory evolution to identify strains that utilize dipeptides containing γ-substituted glutamate residues more efficiently and linked this phenotype to different mutations in DppA. In vitro characterization of these mutants by thermal denaturation midpoint shift assays and isothermal titration calorimetry revealed significantly higher binding affinities of these variants toward peptides containing γ-glutamyl amides, presumably resulting in improved uptake and therefore faster growth in media supplemented with these nonstandard peptides.IMPORTANCE Fundamental and synthetic biology frequently suffer from insufficient delivery of unnatural building blocks or substrates for metabolic pathways into bacterial cells. The use of peptide-based transport vectors represents an established strategy to enable the uptake of such molecules as a cargo. We expand the scope of peptide-based uptake and characterize in detail the obtained DppA mutant variants. Furthermore, we highlight the potential of adaptive laboratory evolution to identify beneficial insertion mutations that are unlikely to be identified with existing directed evolution strategies.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Mutación , Péptidos/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Amidas/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Dipéptidos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Cinética , Proteínas de Transporte de Membrana/genética , Redes y Vías Metabólicas , Especificidad por Sustrato , gamma-Glutamiltransferasa/genética , gamma-Glutamiltransferasa/metabolismo
10.
Eur J Med Chem ; 150: 616-625, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29550734

RESUMEN

The synthesis of both 2'-hydroxy-3'-deoxy and 2'-deoxy-3'-hydroxy cyclopentyl nucleoside phosphonates with the natural nucleobases adenine, thymine, cytosine and guanine from a single precursor has been performed. The guanine containing analogues showed antiviral activity. Especially the 3'-deoxy congener 23 was active, displaying an EC50 of 5.35 µM against TK+ VZV strain and an EC50 of 8.83 µM against TK- VZV strain, besides lacking cytotoxicity. However, the application of phosphonodiamidate prodrug strategy did not lead to a boost in antiviral activity.


Asunto(s)
Antivirales/farmacología , Ciclopentanos/farmacología , Virus ADN/efectos de los fármacos , Nucleósidos/farmacología , Organofosfonatos/farmacología , Antivirales/síntesis química , Antivirales/química , Ciclopentanos/síntesis química , Ciclopentanos/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Organofosfonatos/síntesis química , Organofosfonatos/química , Relación Estructura-Actividad
11.
Metab Eng ; 39: 60-70, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27989807

RESUMEN

Semipermeable membranes of cells frequently pose an obstacle in metabolic engineering by limiting uptake of substrates, intermediates, or xenobiotics. Previous attempts to overcome this barrier relied on the promiscuous nature of peptide transport systems, but often suffered from low versatility or chemical instability. Here, we present an alternative strategy to transport cargo molecules across the inner membrane of Escherichia coli based on chemical synthesis of a stable cargo-peptide vector construct, transport through the peptide import system, and efficient intracellular release of the cargo by the promiscuous enzyme γ-glutamyl transferase (GGT). Retaining the otherwise periplasmic GGT in the cytoplasm was critical for the functionality of the system, as was fine-tuning its expression in order to minimize toxic effects associated to cytoplasmic GGT expression. Given the established protocols of peptide synthesis and the flexibility of peptide transport and GGT, the system is expected to be suitable for a broad range of cargoes.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ingeniería Metabólica/métodos , Péptidos/metabolismo , gamma-Glutamiltransferasa/metabolismo , Transporte Biológico Activo/fisiología , Vías Biosintéticas/fisiología , Escherichia coli/genética , Mejoramiento Genético/métodos , Líquido Intracelular/metabolismo , Proteínas de Transporte de Membrana/genética , Redes y Vías Metabólicas/fisiología , Péptidos/genética , gamma-Glutamiltransferasa/genética
12.
Molecules ; 21(3): 287, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26938510

RESUMEN

The increasing need for site-specific protein decorations that mimic natural posttranslational modifications requires access to a variety of noncanonical amino acids with moieties enabling bioorthogonal conjugation chemistry. Here we present the incorporation of long-chain olefinic amino acids into model proteins with rational variants of pyrrolysyl-tRNA synthetase (PylRS). Nε-heptenoyl lysine was incorporated for the first time using the known promiscuous variant PylRS(Y306A/Y384F), and Nε-pentenoyl lysine was incorporated in significant yields with the novel variant PylRS(C348A/Y384F). This is the only example of rational modification at position C348 to enlarge the enzyme's binding pocket. Furthermore, we demonstrate the feasibility of our chosen amino acids in the thiol-ene conjugation reaction with a thiolated polysaccharide.


Asunto(s)
Alquenos/química , Aminoácidos/química , Proteínas/química , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Sitios de Unión , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
13.
J Syst Chem ; 5: 5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25558290

RESUMEN

BACKGROUND: Fatty acid vesicles are an important part of protocell models currently studied. As protocells can be considered as pre-biological precursors of cells, the models try to contribute to a better understanding of the (cellular) origin of life and emphasize on 2 major aspects: compartmentalization and replication. It has been demonstrated that lipid-based membranes are amenable to growth and division (shell replication). Furthermore compartmentalization creates a unique micro-environment in which biomolecules can accumulate and reactions can occur. Pioneering research by Sugawara, Deamer, Luisi, Szostak and Rasmussen gave more insight in obtaining autocatalytic, self-replicating vesicles capable of containing and reproducing nucleic acid sequences (core replication). Linking both core and shell replication is a challenging feat requiring thorough understanding of membrane dynamics and (auto)catalytic systems. A possible solution may lie in a class of compounds called nucleolipids, who combine a nucleoside, nucleotide or nucleobase with a lipophilic moiety. Early contributions by the group of Yanagawa mentions the prebiotic significance (as a primitive helical template) arising from the supramolecular organization of these compounds. Further contributions, exploring the supramolecular scope regarding phospoliponucleosides (e.g. 5'-dioleylphosphatidyl derivatives of adenosine, uridine and cytidine) can be accounted to Baglioni, Luisi and Berti. This emerging field of amphiphiles is being investigated for surface behavior, supramolecular assembly and even drug ability. RESULTS: A series of α/ß-hydroxy fatty acids and α-amino fatty acids, covalently bound to nucleoside-5'-monophosphates via a hydroxyl or amino group on the fatty acid was examined for spontaneous self-assembly in spherical aggregates and their stability towards intramolecular cleavage. Staining the resulting hydrophobic aggregates with BODIPY-dyes followed by fluorescent microscopy gave several distinct images of vesicles varying from small, isolated spheres to higher order aggregates and large, multimicrometer sized particles. Other observations include rod-like vesicle precursors. NMR was used to assess the stability of a representative sample of nucleolipids. 1D 31P NMR revealed that ß-hydroxy fatty acids containing nucleotides were pH-stable while the α-analogs are acid labile. Degradation products identified by [1H-31P] heteroTOCSY revealed that phosphoesters are cleaved between sugar and phosphate, while phosphoramidates are also cleaved at the lipid-phosphate bond. For the latter compounds, the ratio between both degradation pathways is influenced by the nucleobase moiety. However no oligomerization of nucleotides was observed; nor the formation of 3'-5'-cyclic nucleotides, possible intermediates for oligonucleotide synthesis. CONCLUSIONS: The nucleolipids with a deoxyribose sugar moiety form small or large vesicles, rod-like structures, vesicle aggregates or large vesicles. Some of these aggregates can be considered as intermediate forms in vesicle formation or division. However, we could not observe nucleotide polymerization or cyclic nucleotide function of these nucleolipids, regardless of the sugar moiety that is investigated (deoxyribose, ribose, xylose). To unravel this observation, the chemical stability of the constructs was studied. While the nucleolipids containing ß-hydroxy fatty acids are stable as well in base as in acid circumstances, others degraded in acidic conditions. Phosphoramidate nucleolipids hydrolyzed by P-N as well as P-O bond cleavage where the ratio between both pathways depends on the nucleobase. Diester constructs with an α-hydroxy stearic acid degraded exclusively by hydrolysis of the 5'-O-nucleoside ester bond. As the compounds are too stable and harsh conditions would destruct the material itself, more reactive species such as lipid imidazolates of nucleotides need to be synthesized to further analyze the potential polymerization process. Graphical AbstractVesicle information of a nucleolipid consisting of a nucleoside 5'-monophosphate and a α-hydroxy fatty acid.

14.
J Environ Qual ; 42(5): 1574-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24216435

RESUMEN

Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate.


Asunto(s)
Fertilizantes , Estiércol , Animales , Pollos , Fósforo , Aves de Corral , Suelo
15.
J Environ Qual ; 41(5): 1642-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23099956

RESUMEN

Buildup of phosphorus (P) in agricultural soils and transport of P to nearby surface waters due to excessive, long-term application of poultry litter is an environmental concern in many poultry-producing states. Watershed models are often used to quantify soil and water quality impacts of poultry litter applications. However, depending on how P transport is simulated in watershed models, the anticipated impact could be quite different. The objective of this study was to determine the predictability and sensitivity of the Soil and Water Assessment Tool (SWAT) P model and a newly developed, state-of-the-art manure P model called SurPhos in a poultry litter-applied pasture watershed. A small, predominantly agricultural watershed in Randolph County, Alabama was used for this study. The SWAT model, calibrated for surface runoff and total stream flows (Nash-Sutcliffe coefficient of 0.70 for both), was used to provide runoff inputs to the SurPhos model. Total dissolved P (TDP) exports simulated by the SWAT P and SurPhos models from the hay hydrological response units of the watershed were compared for different poultry litter application rates and different initial soil Solution P levels. Both models showed sensitivity to poultry litter application rates, with SWAT simulating linear and SurPhos simulating nonlinear increases in TDP exports with increase in poultry litter application rates. SWAT showed greater sensitivity to initial soil Solution P levels, which can lead to overestimation of TDP exports, especially at low poultry litter application rates. As opposed to the SurPhos model simulations and contrary to recent studies, SWAT simulated excessive accumulation of Solution P in the top 10 mm of soil. Because SurPhos appears to simulate P transport and build-up processes from manure-applied areas more accurately, this study suggests that SWAT be replaced by SurPhos to more accurately determine watershed-level effectiveness of P management measures.


Asunto(s)
Estiércol , Modelos Teóricos , Fósforo/química , Abastecimiento de Agua , Animales , Fósforo/análisis , Aves de Corral , Suelo/análisis
16.
Birth Defects Res B Dev Reprod Toxicol ; 92(3): 195-205, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21678546

RESUMEN

BACKGROUND: The purpose of this study was to investigate the effect of chronic uptake of bhang, prepared from the Cannabis sativa, on male reproductive physiology in adult male Parkes strain (P) mice. An attempt was also made to investigate the presence of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptors, and fatty acid amide hydrolase (FAAH) in the testis and to evaluate any changes in it resulting from chronic intake of bhang in mice. METHODS AND RESULTS: Adult male mice were given bhang (3 or 6 mg/kg body weight/day) orally for 36 consecutive days. Chronic intake of bhang caused regressive changes in the testes and suppressed sperm count, viability and motility. Bhang intake also caused significant decline in circulating testosterone level due to decline in testicular 3ß HSD enzyme activity. An immunohistochemical study demonstrated the presence of CB1, CB2 and FAAH in the testis of mice. The present study also showed significant variation in the CB1 and CB2 receptors and FAAH protein levels in testes of mice exposed to bhang. These suppressive effects may be due to inhibitory effect of bhang on pituitary expression of gonadotrophin releasing hormone (GnRH) I receptor protein. Treatment of testes with bhang in vitro significantly decreased testicular luteinizing hormone receptor (LHR) and FAAH expression suggesting direct action of bhang on testicular activity. CONCLUSIONS: The findings of this study thus suggest that bhang may impair fertility in male mice through alteration in the testicular endocannabinoid system and that chronic bhang exposure in humans would be predicted to alter male fertility.


Asunto(s)
Cannabis/toxicidad , Genitales Masculinos/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Alanina Transaminasa/sangre , Animales , Apoptosis/efectos de los fármacos , Aspartato Aminotransferasas/sangre , Peso Corporal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fertilidad , Genitales Masculinos/metabolismo , Genitales Masculinos/patología , Inmunohistoquímica , Masculino , Ratones , Tamaño de los Órganos/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Testosterona/sangre
17.
Environ Manage ; 46(2): 302-13, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20665213

RESUMEN

Agricultural production in the state of Alabama, USA, is mostly rain-fed, because of which it is vulnerable to drought during growing season. Since Alabama receives a significant portion of its annual precipitation during winter months, the goal of this study was to evaluate the feasibility of water withdrawal from streams during winter months for irrigation in the growing season. The Soil and Water Assessment Tool (SWAT) was used to estimate the quantity of water that can be sustainably withdrawn from streams during winter high flow periods. The model was successfully calibrated and validated for surface runoff, base flow, and total stream flow. The stream flows generated by the model at several locations within the watershed were then used to examine how much water can be sustainably withdrawn from streams of various orders (first, second and third). Although there was a considerable year-to-year variability in the amount of water that can be withdrawn, a 16-year average showed that first, second, and third order streams can irrigate about 11.6, 10.3, and 10.6% of their drainage areas, respectively. The percentage of drainage area that can be irrigated was not a function of stream order.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales/métodos , Ecología , Agua , Alabama , Estados Unidos , Movimientos del Agua
18.
Nucleic Acids Res ; 37(9): 2867-81, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19282453

RESUMEN

The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3'-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity.


Asunto(s)
Interferencia de ARN , ARN Interferente Pequeño/química , Línea Celular Tumoral , Supervivencia Celular , Humanos , Estabilidad del ARN , ARN Interferente Pequeño/sangre , ARN Interferente Pequeño/toxicidad , Complejo Silenciador Inducido por ARN/metabolismo
19.
Environ Manage ; 42(1): 122-31, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18363053

RESUMEN

The objective of this study is to assess the economic and water quality impact of land use change in a small watershed in the Wiregrass region of Alabama. The study compares changes in water quality and revenue from agricultural and timber production due to changes in land use between years 1992 and 2001. The study was completed in two stages. In the first stage, a biophysical model was used to estimate the effect of land use change on nitrogen and phosphorus runoff and sediment deposition in the main channel; in the second stage, farm enterprise budgeting tools were used to estimate the economic returns for the changes in land use condition. Both biophysical and economic results are discussed, and a case for complex optimization to develop a decision support system is presented.


Asunto(s)
Conservación de los Recursos Naturales , Modelos Económicos , Agua , Alabama , Calibración
20.
J Am Chem Soc ; 129(26): 8362-79, 2007 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-17552524

RESUMEN

Two unusual reactions involving the 5-hexenyl or the 6-heptenyl radical cyclization of a distant double bond at C4' and the radical center at C2' of the ribofuranose ring of thymidine have been used as key steps to synthesize North-type conformationally constrained cis-fused bicyclic five-membered and six-membered carbocyclic analogues of LNA (carbocyclic-LNA-T) and ENA (carbocyclic-ENA-T) in high yields. Their structures have been confirmed unambiguously by long range 1H-13C NMR correlation (HMBC), TOCSY, COSY, and NOE experiments. The carbocyclic-LNA-T and carbocyclic-ENA-T were subsequently incorporated into the antisense oligonucleotides (AONs) to show that they enhance the Tm of the modified AON/RNA heteroduplexes by 3.5-5 degrees C and 1.5 degrees C/modification for carbocyclic-LNA-T and carbocyclic-ENA-T, respectively. Whereas the relative RNase H cleavage rates with carbocyclic-LNA-T, carbocyclic-ENA-T, aza-ENA-T, and LNA-T modified AON/RNA duplexes were found to be very similar to that of the native counterpart, irrespective of the type and the site modification in the AON strand, a single incorporation of carbocyclic-LNA and carbocyclic-ENA into AONs leads to very much more enhanced nuclease stability in the blood serum (stable >48 h) as compared to that of the native (fully degraded <3 h) and the LNA-modified AONs (fully degraded <9 h) and aza-ENA ( approximately 85% stable in 48 h). Clearly, remarkably enhanced lifetimes of these carbocyclic-modified AONs in the blood serum may produce the highly desired pharmacokinetic properties because of their unique stability and consequently a net reduction of the required dosage. This unique quality as well as their efficient use as the AON in the RNase H-promoted cleavage of the target RNA makes our carbocyclic-LNA and carbocyclic-ENA modifications excellent candidates as potential antisense therapeutic agents.


Asunto(s)
Timidina/análogos & derivados , Timidina/química , Secuencia de Bases , Carbohidratos/química , Humanos , Estructura Molecular , Desnaturalización de Ácido Nucleico , Oligonucleótidos , Oligonucleótidos Antisentido/química , Compuestos Organofosforados/química , Ribonucleasas/química , Ribonucleasas/metabolismo , Suero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...