Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Proc Natl Acad Sci U S A ; 120(40): e2306761120, 2023 10 03.
Article En | MEDLINE | ID: mdl-37756335

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.


Antineoplastic Agents , STAT5 Transcription Factor , Humans , Immunity, Innate , Cell Differentiation , Killer Cells, Natural , Inflammation , STAT4 Transcription Factor/genetics
2.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article En | MEDLINE | ID: mdl-37511047

Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.


Brain Neoplasms , Glioblastoma , Humans , Temozolomide/therapeutic use , Glioblastoma/metabolism , Nitric Oxide/metabolism , Dacarbazine/therapeutic use , Cell Line, Tumor , Cell Proliferation , Cell Cycle , Stem Cells/metabolism , Brain Neoplasms/metabolism , Drug Resistance, Neoplasm , Neoplastic Stem Cells/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
3.
Lab Chip ; 23(8): 2039-2047, 2023 04 12.
Article En | MEDLINE | ID: mdl-36897350

Flow cytometers and fluorescence activated cells sorters (FCM/FACS) represent the gold standard for high-throughput single-cell analysis, but their usefulness for label-free applications is limited by the unreliability of forward and side scatter measurements. Scanning flow cytometers represent an appealing alternative, as they exploit measurements of the angle-resolved scattered light to provide accurate and quantitative estimates of cellular properties, but the requirements of current setups are unsuitable for integration with other lab-on-chip technologies or for point-of-care applications. Here we present the first microfluidic scanning flow cytometer (µSFC), able to achieve accurate angle-resolved scattering measurements within a standard polydimethylsiloxane microfluidic chip. The system exploits a low cost linearly variable optical density (OD) filter to reduce the dynamic range of the signal and to increase its signal-to-noise ratio. We present a performance comparison between the µSFC and commercial machines for the label free characterization of polymeric beads with different diameters and refractive indices. In contrast to FCM and FACS, the µSFC yields size estimates linearly correlated with nominal particle sizes (R2 = 0.99) and quantitative estimates of particle refractive indices. The feasibility of using the µSFC for the characterization of biological samples is demonstrated by analyzing a population of monocytes identified based on the morphology of a peripheral blood mononuclear cells sample, which yields values in agreement with the literature. The proposed µSFC combines low setup requirements with high performance, and has great potential for integration within other lab-on-chip systems for multi-parametric cell analysis and for next-generation point-of-care diagnostic applications.


Microfluidic Analytical Techniques , Microfluidics , Refractometry , Leukocytes, Mononuclear , Signal-To-Noise Ratio
4.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article En | MEDLINE | ID: mdl-36768145

Nuclear factor-κB (NF-κB) transcription factors play a key role in the pathogenesis of multiple myeloma (MM). The survival, proliferation and chemoresistance of malignant plasma cells largely rely on the activation of canonical and noncanonical NF-κB pathways. They are triggered by cancer-associated mutations or by the autocrine and paracrine production of cytokines and growth factors as well as direct interaction with cellular and noncellular components of bone marrow microenvironment (BM). In this context, NF-κB also significantly affects the activity of noncancerous cells, including mesenchymal stromal cells (MSCs), which have a critical role in disease progression. Indeed, NF-κB transcription factors are involved in inflammatory signaling that alters the functional properties of these cells to support cancer evolution. Moreover, they act as regulators and/or effectors of pathways involved in the interplay between MSCs and MM cells. The aim of this review is to analyze the role of NF-κB in this hematologic cancer, focusing on NF-κB-dependent mechanisms in tumor cells, MSCs and myeloma-mesenchymal stromal cell crosstalk.


Mesenchymal Stem Cells , Multiple Myeloma , Humans , NF-kappa B/metabolism , Multiple Myeloma/pathology , Signal Transduction , Mesenchymal Stem Cells/metabolism , Transcription Factors/metabolism , Stromal Cells/metabolism , Tumor Microenvironment
5.
Eur J Immunol ; 53(2): e2250198, 2023 02.
Article En | MEDLINE | ID: mdl-36440686

Natural killer (NK) cell activation is regulated by activating and inhibitory receptors that facilitate diseased cell recognition. Among activating receptors, NKG2D and DNAM-1 play a pivotal role in anticancer immune responses since they bind ligands upregulated on transformed cells. During tumor progression, however, these receptors are frequently downmodulated and rendered functionally inactive. Of note, NKG2D internalization has been associated with the acquisition of a dysfunctional phenotype characterized by the cross-tolerization of unrelated activating receptors. However, our knowledge of the consequences of NKG2D engagement is still incomplete. Here, by cytotoxicity assays combined with confocal microscopy, we demonstrate that NKG2D engagement on human NK cells impairs DNAM-1-mediated killing through two different converging mechanisms: by the upregulation of the checkpoint inhibitory receptor TIGIT, that in turn suppresses DNAM-1-mediated cytotoxic function, and by direct inhibition of DNAM-1-promoted signaling. Our results highlight a novel interplay between NKG2D and DNAM-1/TIGIT receptors that may facilitate neoplastic cell evasion from NK cell-mediated clearance.


Killer Cells, Natural , Neoplasms , Tumor Escape , Humans , Killer Cells, Natural/immunology , Neoplasms/genetics , Neoplasms/immunology , NK Cell Lectin-Like Receptor Subfamily K , Signal Transduction , Tumor Escape/genetics , Tumor Escape/immunology
6.
Front Immunol ; 13: 1039120, 2022.
Article En | MEDLINE | ID: mdl-36466890

Natural Killer (NK) cells are key innate effectors of antiviral immune response, and their activity changes in ageing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated the age-related changes of NK cell phenotype and function during SARS-CoV-2 infection, by comparing adult and elderly patients both requiring mechanical ventilation. Adult patients had a reduced number of total NK cells, while elderly showed a peculiar skewing of NK cell subsets towards the CD56lowCD16high and CD56neg phenotypes, expressing activation markers and check-point inhibitory receptors. Although NK cell degranulation ability is significantly compromised in both cohorts, IFN-γ production is impaired only in adult patients in a TGF-ß-dependent manner. This inhibitory effect was associated with a shorter hospitalization time of adult patients suggesting a role for TGF-ß in preventing an excessive NK cell activation and systemic inflammation. Our data highlight an age-dependent role of NK cells in shaping SARS-CoV-2 infection toward a pathophysiological evolution.


COVID-19 , Skin Diseases , Humans , SARS-CoV-2 , Killer Cells, Natural , Transforming Growth Factor beta
7.
Front Immunol ; 13: 942640, 2022.
Article En | MEDLINE | ID: mdl-35967396

NKG2D ligands play a relevant role in Natural Killer (NK) cell -mediated immune surveillance of multiple myeloma (MM). Different levels of regulation control the expression of these molecules at cell surface. A number of oncogenic proteins and miRNAs act as negative regulators of NKG2D ligand transcription and translation, but the molecular mechanisms sustaining their basal expression in MM cells remain poorly understood. Here, we evaluated the role of the growth arrest specific 6 (GAS6)/TAM signaling pathway in the regulation of NKG2D ligand expression and MM recognition by NK cells. Our data showed that GAS6 as well as MERTK and AXL depletion in MM cells results in MICA downregulation and inhibition of NKG2D-mediated NK cell degranulation. Noteworthy, GAS6 derived from bone marrow stromal cells (BMSCs) also increases MICA expression at both protein and mRNA level in human MM cell lines and in primary malignant plasma cells. NF-kB activation is required for these regulatory mechanisms since deletion of a site responsive for this transcription factor compromises the induction of mica promoter by BMSCs. Accordingly, knockdown of GAS6 reduces the capability of BMSCs to activate NF-kB pathway as well as to enhance MICA expression in MM cells. Taken together, these results shed light on molecular mechanism underlying NKG2D ligand regulation and identify GAS6 protein as a novel autocrine and paracrine regulator of basal expression of MICA in human MM cells.


Histocompatibility Antigens Class I , Intercellular Signaling Peptides and Proteins , Multiple Myeloma , NK Cell Lectin-Like Receptor Subfamily K , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Signal Transduction
8.
Int J Mol Sci ; 23(14)2022 Jul 16.
Article En | MEDLINE | ID: mdl-35887206

Colorectal cancer (CRC) is one of the most common malignancies and leading causes of cancer-related deaths worldwide. Despite its complex pathogenesis and progression, CRC represents a well-fitting example of how the immune contexture can dictate the disease outcome. The presence of cytotoxic lymphocytes, both CD8+ T cells and natural killer (NK) cells, represents a relevant prognostic factor in CRC and is associated with a better overall survival. Together with NK cells, other innate lymphocytes, namely, innate lymphoid cells (ILCs), have been found both in biopsies of CRC patients and in murine models of intestinal cancer, playing both pro- and anti-tumor activities. In particular, several type 1 innate lymphoid cells (ILC1) with cytotoxic functions have been recently described, and evidence in mice shows a role for both NK cells and ILC1 in controlling CRC metastasis. In this review, we provide an overview of the features of NK cells and the expanding spectrum of innate lymphocytes with cytotoxic functions. We also comment on both the described and the potential roles these innate lymphocytes can play during the progression of intestinal cancer leading to metastasis. Finally, we discuss recent advances in the molecular mechanisms underlying the functional regulation of cytotoxic innate lymphocytes in CRC.


Colorectal Neoplasms , Lymphocytes , Animals , CD8-Positive T-Lymphocytes , Immunity, Innate , Killer Cells, Natural , Mice
9.
Cells ; 10(10)2021 10 14.
Article En | MEDLINE | ID: mdl-34685721

Innate lymphoid cells (ILCs) are innate lymphocytes playing essential functions in protection against microbial infections and participate in both homeostatic and pathological contexts, including tissue remodeling, cancer, and inflammatory disorders. A number of lineage-defining transcription factors concurs to establish transcriptional networks which determine the identity and the activity of the distinct ILC subsets. However, the contribution of other regulatory molecules in controlling ILC development and function is also recently emerging. In this regard, noncoding RNAs (ncRNAs) represent key elements of the complex regulatory network of ILC biology and host protection. ncRNAs mostly lack protein-coding potential, but they are endowed with a relevant regulatory activity in immune and nonimmune cells because of their ability to control chromatin structure, RNA stability, and/or protein synthesis. Herein, we summarize recent studies describing how distinct types of ncRNAs, mainly microRNAs, long ncRNAs, and circular RNAs, act in the context of ILC biology. In particular, we comment on how ncRNAs can exert key effects in ILCs by controlling gene expression in a cell- or state-specific manner and how this tunes distinct functional outputs in ILCs.


Gene Expression Regulation , Immunity, Innate/genetics , Lymphocytes/metabolism , RNA, Untranslated/genetics , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Untranslated/metabolism
10.
Eur J Immunol ; 51(11): 2568-2575, 2021 11.
Article En | MEDLINE | ID: mdl-34347289

Type 1 innate lymphoid cells (ILC1) are tissue-resident lymphocytes that provide early protection against bacterial and viral infections. Discrete transcriptional states of ILC1 have been identified in homeostatic and pathological contexts. However, whether these states delineate ILC1 with different functional properties is not completely understood. Here, we show that liver ILC1 are heterogeneous for the expression of distinct effector molecules and surface receptors, including granzyme A (GzmA) and CD160, in mice. ILC1 expressing high levels of GzmA are enriched in the liver of adult mice, and represent the main hepatic ILC1 population at birth. However, the heterogeneity of GzmA and CD160 expression in hepatic ILC1 begins perinatally and increases with age. GzmA+ ILC1 differ from NK cells for the limited homeostatic requirements of JAK/STAT signals and the transcription factor Nfil3. Moreover, by employing Rorc(γt)-fate map (fm) reporter mice, we established that ILC3-ILC1 plasticity contributes to delineate the heterogeneity of liver ILC1, with RORγt-fm+ cells skewed toward a GzmA- CD160+ phenotype. Finally, we showed that ILC1 defined by the expression of GzmA and CD160 are characterized by graded cytotoxic potential and ability to produce IFN-γ. In conclusion, our findings help deconvoluting ILC1 heterogeneity and provide evidence for functional diversification of liver ILC1.


Liver/cytology , Liver/immunology , Lymphocyte Subsets/cytology , Lymphocytes/cytology , Animals , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism , Granzymes/metabolism , Immunity, Innate/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Receptors, Immunologic/metabolism
11.
Eur J Immunol ; 51(11): 2607-2617, 2021 11.
Article En | MEDLINE | ID: mdl-34392531

Rearrangement of the actin cytoskeleton is critical for cytotoxic and immunoregulatory functions as well as migration of natural killer (NK) cells. However, dynamic reorganization of actin is a complex process, which remains largely unknown. Here, we investigated the role of the protein Cereblon (CRBN), an E3 ubiquitin ligase complex co-receptor and the primary target of the immunomodulatory drugs, in NK cells. We observed that CRBN partially colocalizes with F-actin in chemokine-treated NK cells and is recruited to the immunological synapse, thus suggesting a role for this protein in cytoskeleton reorganization. Accordingly, silencing of CRBN in NK cells results in a reduced cytotoxicity that correlates with a defect in conjugate and lytic synapse formation. Moreover, CRBN depletion significantly impairs the ability of NK cells to migrate and reduces the enhancing effect of lenalidomide on NK cell migration. Finally, we provided evidence that CRBN is required for activation of the small GTPase Rac1, a critical mediator of cytoskeleton dynamics. Indeed, in CRBN-depleted NK cells, chemokine-mediated or target cell-mediated Rac1 activation is significantly reduced. Altogether our data identify a critical role for CRBN in regulating NK cell functions and suggest that this protein may mediate the stimulatory effect of lenalidomide on NK cells.


Adaptor Proteins, Signal Transducing/immunology , Cell Movement/immunology , Cytotoxicity, Immunologic/immunology , Killer Cells, Natural/immunology , Ubiquitin-Protein Ligases/immunology , rac1 GTP-Binding Protein/immunology , Cell Movement/drug effects , Cytotoxicity, Immunologic/drug effects , Humans , Immunomodulating Agents/pharmacology , Killer Cells, Natural/drug effects , Lenalidomide/pharmacology
12.
Mol Aspects Med ; 80: 100967, 2021 08.
Article En | MEDLINE | ID: mdl-33941383

Innate lymphoid cells (ILCs) and tissue-resident natural killer (NK) cells ensure immunity at environmental interfaces and help maintain barrier integrity of the intestinal tract. This wide range of innate lymphocytes is able to provide fast and potent inflammatory responses that, when deregulated, have been associated with pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). While the presence of tumor-infiltrating NK cells is generally associated with a favorable outcome in CRC patients, emerging evidence reveals distinct roles for ILCs in regulating CRC pathogenesis and progression. Advances in next generation sequencing technology, and in particular of single-cell RNA-seq approaches, along with multidimensional flow cytometry analysis, have helped to deconvolute the complexity and heterogeneity of the ILC system both in homeostatic and pathological contexts. In this review, we discuss the protective and detrimental roles of NK cells and ILCs in the pathogenesis of CRC, focusing on the phenotypic and transcriptional modifications these cells undergo during CRC development and progression.


Colorectal Neoplasms , Immunity, Innate , Colorectal Neoplasms/genetics , Humans , Immunity, Innate/genetics , Intestines , Killer Cells, Natural
13.
Int J Mol Sci ; 22(3)2021 Jan 22.
Article En | MEDLINE | ID: mdl-33499314

The Ikaros zing-finger family transcription factors (IKZF TFs) are important regulators of lymphocyte development and differentiation and are also highly expressed in B cell malignancies, including Multiple Myeloma (MM), where they are required for cancer cell growth and survival. Moreover, IKZF TFs negatively control the functional properties of many immune cells. Thus, the targeting of these proteins has relevant therapeutic implications in cancer. Indeed, accumulating evidence demonstrated that downregulation of Ikaros and Aiolos, two members of the IKZF family, in malignant plasma cells as well as in adaptative and innate lymphocytes, is key for the anti-myeloma activity of Immunomodulatory drugs (IMiDs). This review is focused on IKZF TF-related pathways in MM. In particular, we will address how the depletion of IKZF TFs exerts cytotoxic effects on MM cells, by reducing their survival and proliferation, and concomitantly potentiates the antitumor immune response, thus contributing to therapeutic efficacy of IMiDs, a cornerstone in the treatment of this neoplasia.


Ikaros Transcription Factor/physiology , Multiple Myeloma/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Ikaros Transcription Factor/genetics , Immunity/drug effects , Immunomodulation/drug effects , Lenalidomide/pharmacology , Lymphocytes/cytology , Mice , Multiple Myeloma/immunology , Thalidomide/pharmacology
15.
J Immunol Res ; 2020: 1938704, 2020.
Article En | MEDLINE | ID: mdl-32322591

BACKGROUND: Personalised medicine in oncology needs standardised immunological assays. Flow cytometry (FCM) methods represent an essential tool for immunomonitoring, and their harmonisation is crucial to obtain comparable data in multicentre clinical trials. The objective of this study was to design a harmonisation workflow able to address the most effective issues contributing to intra- and interoperator variabilities in a multicentre project. METHODS: The Italian National Institute of Health (Istituto Superiore di Sanità, ISS) managed a multiparametric flow cytometric panel harmonisation among thirteen operators belonging to five clinical and research centres of Lazio region (Italy). The panel was based on a backbone mixture of dried antibodies (anti-CD3, anti-CD4, anti-CD8, anti-CD45RA, and anti-CCR7) to detect naïve/memory T cells, recognised as potential prognostic/predictive immunological biomarkers in cancer immunotherapies. The coordinating centre distributed frozen peripheral blood mononuclear cells (PBMCs) and fresh whole blood (WB) samples from healthy donors, reagents, and Standard Operating Procedures (SOPs) to participants who performed experiments by their own equipment, in order to mimic a real-life scenario. Operators returned raw and locally analysed data to ISS for central analysis and statistical elaboration. RESULTS: Harmonised and reproducible results were obtained by sharing experimental set-up and procedures along with centralising data analysis, leading to a reduction of cross-centre variability for naïve/memory subset frequencies particularly in the whole blood setting. CONCLUSION: Our experimental and analytical working process proved to be suitable for the harmonisation of FCM assays in a multicentre setting, where high-quality data are required to evaluate potential immunological markers, which may contribute to select better therapeutic options.


Flow Cytometry/standards , Immunophenotyping/standards , T-Lymphocyte Subsets/classification , Biomarkers/blood , CD3 Complex/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Color/standards , Flow Cytometry/methods , Humans , Immunologic Memory , Italy , Leukocyte Common Antigens/blood , Leukocytes, Mononuclear/immunology , Observer Variation , Receptors, CCR7/blood , T-Lymphocyte Subsets/immunology
16.
Cancers (Basel) ; 12(2)2020 Feb 13.
Article En | MEDLINE | ID: mdl-32069911

Bone marrow stromal cells (BMSCs) strongly contribute to multiple myeloma (MM) progression, promoting the survival and growth of malignant plasma cells (PCs). However, the possible impact of these cells on the immune-mediated recognition of MM cells remains largely unknown. DNAM-1 activating receptor plays a prominent role in NK cell anti-MM response engaging the ligands poliovirus receptor (PVR) and nectin-2 on malignant PCs. Here, we analysed the role of MM patient-derived BMSCs in the regulation of PVR expression. We found that BMSCs enhance PVR surface expression on MM cells and promote their NK cell-mediated recognition. PVR upregulation occurs at transcriptional level and involves NF-kB transcription factor activation by BMSC-derived soluble factors. Indeed, overexpression of a dominant-negative mutant of IKBα blocked PVR upregulation. IL-8 plays a prominent role in these mechanisms since blockade of CXCR1/2 receptors as well as depletion of the cytokine via RNA interference prevents the enhancement of PVR expression by BMSC-derived conditioned medium. Interestingly, IL-8 is associated with stromal microvesicles which are also required for PVR upregulation via CXCR1/CXCR2 signaling activation. Our findings identify BMSCs as regulators of NK cell anti-MM response and contribute to define novel molecular pathways involved in the regulation of PVR expression in cancer cells.

17.
Int J Mol Sci ; 21(3)2020 Jan 30.
Article En | MEDLINE | ID: mdl-32019260

CD155 is an adhesion molecule belonging to the Nectin/Nectin-like family often overexpressed on tumor cells and involved in many different processes such as cell adhesion, migration and proliferation. In contrast to these pro-tumorigenic functions, CD155 is also a ligand for the activating receptor DNAM-1 expressed on cytotoxic lymphocytes including Natural Killer (NK) cells and involved in anti-tumor immune response. However, during tumor progression inhibitory receptors for CD155 are up-regulated on the surface of effector cells, contributing to an impairment of their cytotoxic capacity. In this review we will focus on the roles of CD155 as a ligand for the activating receptor DNAM-1 regulating immune surveillance against cancer and as pro-oncogenic molecule favoring tumor proliferation, invasion and immune evasion. A deeper understanding of the multiple roles played by CD155 in cancer development contributes to improving anti-tumor strategies aimed to potentiate immune response against cancer.


Immunologic Surveillance/immunology , Neoplasms/immunology , Neoplasms/pathology , Receptors, Virus/metabolism , Disease Progression , Humans , Neoplasms/metabolism
18.
J Clin Med ; 9(1)2020 Jan 05.
Article En | MEDLINE | ID: mdl-31948072

Transforming growth factor (TGF)-ß is a central immunosuppressive cytokine within tumor microenvironment inhibiting the expansion and function of major cellular components of adaptive and innate immune system. Among them, compelling evidence has demonstrated that TGF-ß is a key regulator of natural killer (NK) cells, innate lymphoid cells (ILCs) with a critical role in immunosurveillance against different kinds of cancer cells. A TGF-ß rich tumor microenvironment blocks NK cell activity at multiple levels. This immunosuppressive factor exerts direct regulatory effects on NK cells including inhibition of cytokine production, alteration of activating/inhibitory receptor expression, and promotion of the conversion into non cytotoxic group I ILC (ILC1). Concomitantly, TGF-ß can render tumor cells less susceptible to NK cell-mediated recognition and lysis. Indeed, accumulating evidence suggest that changes in levels of NKG2D ligands, mainly MICA, as well as an increase of immune checkpoint inhibitors (e.g., PD-L1) and other inhibitory ligands on cancer cells significantly contribute to TGF-ß-mediated suppression of NK cell activity. Here, we will take into consideration two major mechanisms underlying the negative regulation of ILC function by TGF-ß in cancer. First, we will address how TGF-ß impacts the balance of signals governing NK cell activity. Second, we will review recent advances on the role of this cytokine in driving ILC plasticity in cancer. Finally, we will discuss how the development of therapeutic approaches blocking TGF-ß may reverse the suppression of host immune surveillance and improve anti-tumor NK cell response in the clinic.

19.
J Clin Med ; 8(11)2019 Nov 07.
Article En | MEDLINE | ID: mdl-31703320

T-cell-depleted (TCD) human leukocyte antigen (HLA) haploidentical (haplo) hematopoietic stem cell transplantation (HSCT) (TCD-haplo-HSCT) has had a huge impact on the treatment of many haematological diseases. The adoptive transfer of a titrated number of T cells genetically modified with a gene suicide can improve immune reconstitution and represents an interesting strategy to enhance the success of haplo-HSCT. Natural killer (NK) cells are the first donor-derived lymphocyte population to reconstitute following transplantation, and play a pivotal role in mediating graft-versus-leukaemia (GvL). We recently described a CD56lowCD16low NK cell subset that mediates both cytotoxic activity and cytokine production. Given the multifunctional properties of this subset, we studied its functional recovery in a cohort of children given α/ßT-cell-depleted haplo-HSCT followed by the infusion of a titrated number of iCasp-9-modified T cells (iCasp-9 HSCT). The data obtained indicate that multifunctional CD56lowCD16low NK cell frequency is similar to that of healthy donors (HD) at all time points analysed, showing enrichment in the bone marrow (BM). Interestingly, with regard to functional acquisition, we identified two groups of patients, namely those whose NK cells did (responder) or did not (non responder) degranulate or produce cytokines. Moreover, in patients analysed for both functions, we observed that the acquisition of degranulation capacity was not associated with the ability to produce interferon-gamma (IFN-γ Intriguingly, we found a higher BM and peripheral blood (PB) frequency of iCas9 donor T cells only in patients characterized by the ability of CD56lowCD16low NK cells to degranulate. Collectively, these findings suggest that donor iCasp9-T lymphocytes do not have a significant influence on NK cell reconstitution, even if they may positively affect the acquisition of target-induced degranulation of CD56lowCD16low NK cells in the T-cell-depleted haplo-HSC transplanted patients.

20.
Cancers (Basel) ; 11(6)2019 Jun 11.
Article En | MEDLINE | ID: mdl-31212703

DNA damage and the generation of reactive oxygen species (ROS) are key mechanisms of apoptotic cell death by commonly used genotoxic drugs. However, the complex cellular response to these pharmacologic agents remains yet to be fully characterized. Several studies have described the role of transcription factor octamer-1 (Oct-1)/Pit-1, Oct-1/2, and Unc-86 shared domain class 2 homeobox 1 (POU2F1) in the regulation of the genes important for cellular response to genotoxic stress. Evaluating the possible involvement of other POU family transcription factors in these pathways, we revealed the inducible expression of Oct-6/POU3F1, a regulator of neural morphogenesis and epidermal differentiation, in cancer cells by genotoxic drugs. The induction of Oct-6 occurs at the transcriptional level via reactive oxygen species (ROS) and ataxia telangiectasia mutated- and Rad3-related (ATR)-dependent mechanisms, but in a p53 independent manner. Moreover, we provide evidence that Oct-6 may play a role in the regulation of cellular response to DNA damaging agents. Indeed, by using the shRNA approach, we demonstrate that in doxorubicin-treated H460 non-small-cell lung carcinoma (NSCLC) cells, Oct-6 depletion leads to a reduced G2-cell cycle arrest and senescence, but also to increased levels of intracellular ROS and DNA damage. In addition, we could identify p21 and catalase as Oct-6 target genes possibly mediating these effects. These results demonstrate that Oct-6 is expressed in cancer cells after genotoxic stress, and suggests its possible role in the control of ROS, DNA damage response (DDR), and senescence.

...