Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 64
1.
J Enzyme Inhib Med Chem ; 39(1): 2313055, 2024 Dec.
Article En | MEDLINE | ID: mdl-38416868

Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.


Benzaldehydes , Lysine , Toll-Like Receptor 2 , Humans , Animals , Mice , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptors/metabolism , Membrane Glycoproteins/metabolism , Receptors, Interleukin-1/metabolism
2.
Eur J Immunol ; 54(5): e2350515, 2024 May.
Article En | MEDLINE | ID: mdl-38361219

Caspase-1 location in cells has been studied with fluorochrome-labeled inhibitors of caspase-1 (FLICA reagents). We report that FLICA reagents have limited cell-membrane permeability. This impacts experimental design as cells with intact membranes, including caspase-1 knockout cells, are not appropriate controls for cells with inflammasome-induced gasdermin D membrane pores.


Caspase 1 , Caspase Inhibitors , Cell Membrane Permeability , Fluorescent Dyes , Inflammasomes , Macrophages , Caspase 1/metabolism , Animals , Macrophages/immunology , Macrophages/metabolism , Cell Membrane Permeability/drug effects , Mice , Inflammasomes/metabolism , Caspase Inhibitors/pharmacology , Mice, Knockout , Phosphate-Binding Proteins/metabolism , Humans
3.
J Virol ; 97(11): e0125123, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37850747

IMPORTANCE: Dengue virus, an arbovirus, causes an estimated 100 million symptomatic infections annually and is an increasing threat as the mosquito range expands with climate change. Dengue epidemics are a substantial strain on local economies and health infrastructure, and an understanding of what drives severe disease may enable treatments to help reduce hospitalizations. Factors exacerbating dengue disease are debated, but gut-related symptoms are much more frequent in severe than mild cases. Using mouse models of dengue infection, we have shown that inflammation and damage are earlier and more severe in the gut than in other tissues. Additionally, we observed impairment of the gut mucus layer and propose that breakdown of the barrier function exacerbates inflammation and promotes severe dengue disease. This idea is supported by recent data from human patients showing elevated bacteria-derived molecules in dengue patient serum. Therapies aiming to maintain gut integrity may help to abrogate severe dengue disease.


Dengue Virus , Severe Dengue , Animals , Humans , Mice , Culicidae , Dengue Virus/physiology , Inflammation/virology , Severe Dengue/pathology , Kinetics
4.
Eur J Immunol ; 53(7): e2250056, 2023 07.
Article En | MEDLINE | ID: mdl-37058370

TLRs engage numerous adaptor proteins and signaling molecules, enabling a complex series of post-translational modifications (PTMs) to mount inflammatory responses. TLRs themselves are post-translationally modified following ligand-induced activation, with this being required to relay the full spectrum of proinflammatory signaling responses. Here, we reveal indispensable roles for TLR4 Y672 and Y749 phosphorylation in mounting optimal LPS-inducible inflammatory responses in primary mouse macrophages. LPS promotes phosphorylation at both tyrosine residues, with Y749 phosphorylation being required for maintenance of total TLR4 protein levels and Y672 phosphorylation exerting its pro-inflammatory effects more selectively by initiating ERK1/2 and c-FOS phosphorylation. Our data also support a role for the TLR4-interacting membrane proteins SCIMP and the SYK kinase axis in mediating TLR4 Y672 phosphorylation to permit downstream inflammatory responses in murine macrophages. The corresponding residue in human TLR4 (Y674) is also required for optimal LPS signaling responses. Our study, thus, reveals how a single PTM on one of the most widely studied innate immune receptors orchestrates downstream inflammatory responses.


Cytokines , Lipopolysaccharides , Humans , Animals , Mice , Phosphorylation , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4 , Tyrosine/metabolism , Tyrosine/pharmacology , Macrophages
5.
Mol Psychiatry ; 28(7): 2878-2893, 2023 Jul.
Article En | MEDLINE | ID: mdl-36316366

Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation. Using SARS-CoV-2 infection of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) as a COVID-19 pre-clinical model, we established the presence of virus in the brain together with microglial activation and NLRP3 inflammasome upregulation in comparison to uninfected mice. Next, utilising a model of human monocyte-derived microglia, we identified that SARS-CoV-2 isolates can bind and enter human microglia in the absence of viral replication. This interaction of virus and microglia directly induced robust inflammasome activation, even in the absence of another priming signal. Mechanistically, we demonstrated that purified SARS-CoV-2 spike glycoprotein activated the NLRP3 inflammasome in LPS-primed microglia, in a ACE2-dependent manner. Spike protein also could prime the inflammasome in microglia through NF-κB signalling, allowing for activation through either ATP, nigericin or α-synuclein. Notably, SARS-CoV-2 and spike protein-mediated microglial inflammasome activation was significantly enhanced in the presence of α-synuclein fibrils and was entirely ablated by NLRP3-inhibition. Finally, we demonstrate SARS-CoV-2 infected hACE2 mice treated orally post-infection with the NLRP3 inhibitory drug MCC950, have significantly reduced microglial inflammasome activation, and increased survival in comparison with untreated SARS-CoV-2 infected mice. These results support a possible mechanism of microglial innate immune activation by SARS-CoV-2, which could explain the increased vulnerability to developing neurological symptoms akin to Parkinson's disease in COVID-19 infected individuals, and a potential therapeutic avenue for intervention.


COVID-19 , Parkinson Disease , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , alpha-Synuclein/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/metabolism , Mice, Transgenic
6.
J Biol Chem ; 298(12): 102666, 2022 12.
Article En | MEDLINE | ID: mdl-36334634

Conventional assays to probe signaling protein interactions and function involve measurement of luciferase reporter expression within the bulk cell population, with lack of control over target-protein expression level. To address this issue, we have developed a rapid and robust flow cytometric assay for analysis of signaling protein function. A fluorescent reporter and fluorescent tagging of the target protein enables simultaneous assessment of protein expression and signaling within individual cells. We have applied our technique to the analysis of variants of the lipopolysaccharide receptor Toll-like receptor 4 (TLR4) and its adapter protein MyD88, using a NF-кB-responsive promoter driving mScarlet-I expression. The assay enables exclusion of nontransfected cells and overexpressing cells that signal spontaneously. Additionally, our assay allows the identification of protein variants that fail to express. We found that the assays were highly sensitive, with cells expressing an appropriate level of GFP-MyD88 showing approximately 200-fold induction of mScarlet-I by lipopolysaccharide, and we can detect subtle protein concentration-dependent effects of mutations. Importantly, the assay is adaptable to various signaling pathways.


Lipopolysaccharides , Myeloid Differentiation Factor 88 , Adaptor Proteins, Signal Transducing/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Humans
7.
Nat Commun ; 12(1): 2578, 2021 05 10.
Article En | MEDLINE | ID: mdl-33972532

MyD88 and MAL are Toll-like receptor (TLR) adaptors that signal to induce pro-inflammatory cytokine production. We previously observed that the TIR domain of MAL (MALTIR) forms filaments in vitro and induces formation of crystalline higher-order assemblies of the MyD88 TIR domain (MyD88TIR). These crystals are too small for conventional X-ray crystallography, but are ideally suited to structure determination by microcrystal electron diffraction (MicroED) and serial femtosecond crystallography (SFX). Here, we present MicroED and SFX structures of the MyD88TIR assembly, which reveal a two-stranded higher-order assembly arrangement of TIR domains analogous to that seen previously for MALTIR. We demonstrate via mutagenesis that the MyD88TIR assembly interfaces are critical for TLR4 signaling in vivo, and we show that MAL promotes unidirectional assembly of MyD88TIR. Collectively, our studies provide structural and mechanistic insight into TLR signal transduction and allow a direct comparison of the MicroED and SFX techniques.


Crystallography/methods , Membrane Glycoproteins/chemistry , Myeloid Differentiation Factor 88/chemistry , Receptors, Interleukin-1/chemistry , Toll-Like Receptor 4/chemistry , Dimerization , HEK293 Cells , Humans , Membrane Glycoproteins/genetics , Models, Molecular , Molecular Dynamics Simulation , Mutation , Myeloid Differentiation Factor 88/genetics , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Receptors, Interleukin-1/genetics , Recombinant Proteins , Signal Transduction/genetics , Toll-Like Receptor 4/genetics
8.
Science ; 371(6525): 190-194, 2021 01 08.
Article En | MEDLINE | ID: mdl-33414219

There are no approved flaviviral therapies and the development of vaccines against flaviruses has the potential of being undermined by antibody-dependent enhancement (ADE). The flavivirus nonstructural protein 1 (NS1) is a promising vaccine antigen with low ADE risk but has yet to be explored as a broad-spectrum therapeutic antibody target. Here, we provide the structural basis of NS1 antibody cross-reactivity through cocrystallization of the antibody 1G5.3 with NS1 proteins from dengue and Zika viruses. The 1G5.3 antibody blocks multi-flavivirus NS1-mediated cell permeability in disease-relevant cell lines, and therapeutic application of 1G5.3 reduces viremia and improves survival in dengue, Zika, and West Nile virus murine models. Finally, we demonstrate that 1G5.3 protection is independent of effector function, identifying the 1G5.3 epitope as a key site for broad-spectrum antiviral development.


Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Dengue Virus/immunology , Viral Nonstructural Proteins/immunology , West Nile virus/immunology , Zika Virus/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , CHO Cells , Cell Line , Cricetulus , Cross Reactions , Dengue/prevention & control , Dengue/therapy , Disease Models, Animal , Humans , Mice , Protein Domains , Viral Nonstructural Proteins/chemistry , Viremia/therapy , West Nile Fever/prevention & control , West Nile Fever/therapy , Zika Virus Infection/prevention & control , Zika Virus Infection/therapy
9.
EMBO J ; 39(17): e106202, 2020 09 01.
Article En | MEDLINE | ID: mdl-32869315

Shigella, a major cause of bacterial dysentery, knows when it is not wanted. To generate and maintain its niche within host cells, this unwelcome guest injects several dozen virulence factors via a type 3 secretion system (T3SS). In this issue, Ashida et al (2020) have elucidated the role of two such factors from Shigella flexneri-OspC1 and OspD3-that together counteract apoptotic and necroptotic death pathways in colonised epithelial cells. As a result, Shigella can replicate to high levels within the colonic epithelium, leading to the substantial epithelial damage in shigellosis and efficient bacterial release for faecal transmission.


Dysentery, Bacillary , Shigella , Caspase 8 , Cell Death , Epithelial Cells , Humans , Shigella/genetics , Shigella flexneri/genetics
10.
EMBO Rep ; 20(9): e48891, 2019 09.
Article En | MEDLINE | ID: mdl-31379068

The non-canonical inflammasome mediates pyroptotic cell death in response to bacterial lipopolysaccharide (LPS) found in the cytosol. Understanding the mechanism and regulation of this system is of great interest, given its central role in mouse models of bacterial septic shock. In this issue of EMBO Reports, Benaoudia and colleagues sought to discover extra players in the human non-canonical inflammasome using a CRISPR library screen; the only strongly positive hit apart from the known components caspase-4 and gasdermin D was interferon regulatory factor-2 (IRF2) [1 ]. IRF2 was found to be a transcriptional activator of caspase-4, and in its absence, induction of IRF1 could substitute to maintain caspase-4 expression.


Inflammasomes , Lipopolysaccharides , Animals , Humans , Interferon Regulatory Factor-1 , Interferon Regulatory Factor-2 , Mice
11.
Immunol Cell Biol ; 97(1): 17-28, 2019 01.
Article En | MEDLINE | ID: mdl-30052286

Inflammasomes are protein complexes activated by infection and cellular stress that promote caspase-1 activation and subsequent inflammatory cytokine processing and cell death. It has been anticipated that inflammasome activity contributes to autoimmunity. However, we previously showed that macrophages from autoimmune New Zealand Black (NZB) mice lack NLRP3 inflammasome function, and their absent in melanoma 2 (AIM2) inflammasome responses are compromised by high expression of the AIM2 antagonist protein p202. Here we found that the point mutation leading to lack of NLRP3 expression occurred early in the NZB strain establishment, as it is shared with the related obese strain New Zealand Obese, but not with the unrelated New Zealand White (NZW) strain. The first cross progeny of NZB and NZW mice develop more severe lupus nephritis than the NZB strain. We have compared AIM2 and NLRP3 inflammasome function in macrophages from NZB, NZW, and NZB/W F1 mice. The NZW parental strain showed strong inflammasome function, whereas the NZB/W F1 have haploinsufficient expression of NLRP3 and show reduced NLRP3 and AIM2 inflammasome responses, particularly at low stimulus strength. It remains to be established whether the low inflammasome function could contribute to loss of tolerance and the onset of autoimmunity in NZB and NZB/W F1. However, with amplifying inflammatory stimuli through the course of disease, the NLRP3 response in the NZB/W F1 may be sufficient to contribute to kidney damage at later stages of disease.


Autoimmunity , DNA-Binding Proteins/deficiency , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Animals , Autoimmunity/genetics , DNA-Binding Proteins/immunology , Female , Inflammasomes/genetics , Lupus Nephritis/genetics , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred NZB , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Point Mutation
12.
Immunol Cell Biol ; 96(10): 1120-1130, 2018 11.
Article En | MEDLINE | ID: mdl-30003588

Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host-pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by "speck" formation, as well as the cleavage and secretion of interleukin-1ß and caspase-1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase-11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR-dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP-1 cells lacking the human caspase-11 homologs, caspase-4 and -5,we demonstrated that caspase-5 but not caspase-4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase-4. This suggests that caspase-4 and caspase-5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram-negative infections in humans and the use of OMVs as novel vaccines.


Caspases/metabolism , Extracellular Vesicles/metabolism , Inflammasomes/metabolism , Monocytes/immunology , Monocytes/metabolism , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/physiology , Caspase 1/metabolism , Cell Line , Humans , Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/metabolism , Pseudomonas Infections/microbiology , Signal Transduction
13.
Adv Exp Med Biol ; 1062: 89-106, 2018.
Article En | MEDLINE | ID: mdl-29845527

Recent structural and functional advances provide fresh insight into the biology of the dengue virus non-structural protein, NS1 and suggest new avenues of research. The work of our lab and others have shown that the secreted, hexameric form of NS1 has a systemic toxic effect, inducing inflammatory cytokines and acting directly on endothelial cells to produce the hallmark of dengue disease, vascular leak. We also demonstrated that NS1 exerts its toxic activity through recognition by the innate immune receptor TLR4, mimicking the bacterial endotoxin LPS. This monograph covers the background underpinning these new findings and discusses new avenues for antiviral and vaccine intervention.


Dengue Virus/immunology , Severe Dengue/virology , Viral Nonstructural Proteins/immunology , Animals , Cytokines/genetics , Cytokines/immunology , Dengue Virus/chemistry , Dengue Virus/genetics , Endothelial Cells/immunology , Endothelial Cells/virology , Humans , Receptors, Virus/genetics , Receptors, Virus/immunology , Severe Dengue/immunology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
14.
J Exp Med ; 215(3): 827-840, 2018 03 05.
Article En | MEDLINE | ID: mdl-29432122

Host-protective caspase-1 activity must be tightly regulated to prevent pathology, but mechanisms controlling the duration of cellular caspase-1 activity are unknown. Caspase-1 is activated on inflammasomes, signaling platforms that facilitate caspase-1 dimerization and autoprocessing. Previous studies with recombinant protein identified a caspase-1 tetramer composed of two p20 and two p10 subunits (p20/p10) as an active species. In this study, we report that in the cell, the dominant species of active caspase-1 dimers elicited by inflammasomes are in fact full-length p46 and a transient species, p33/p10. Further p33/p10 autoprocessing occurs with kinetics specified by inflammasome size and cell type, and this releases p20/p10 from the inflammasome, whereupon the tetramer becomes unstable in cells and protease activity is terminated. The inflammasome-caspase-1 complex thus functions as a holoenzyme that directs the location of caspase-1 activity but also incorporates an intrinsic self-limiting mechanism that ensures timely caspase-1 deactivation. This intrinsic mechanism of inflammasome signal shutdown offers a molecular basis for the transient nature, and coordinated timing, of inflammasome-dependent inflammatory responses.


Caspase 1/metabolism , Inflammasomes/metabolism , Animals , Kinetics , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Models, Biological , Nigericin/pharmacology , Protein Multimerization
15.
J Mol Biol ; 430(2): 238-247, 2018 01 19.
Article En | MEDLINE | ID: mdl-29100888

Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1ß and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1ß cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3-/-Casp8-/- macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.


Caspase 1/immunology , Caspase 3/immunology , Caspase 8/immunology , DNA-Binding Proteins/immunology , Inflammasomes/immunology , Animals , Apoptosis , Caspase 8/genetics , Gene Deletion , Mice, Inbred C57BL , Pyroptosis
16.
Nat Struct Mol Biol ; 24(9): 743-751, 2017 Sep.
Article En | MEDLINE | ID: mdl-28759049

Toll-like receptor (TLR) signaling is a key innate immunity response to pathogens. Recruitment of signaling adapters such as MAL (TIRAP) and MyD88 to the TLRs requires Toll/interleukin-1 receptor (TIR)-domain interactions, which remain structurally elusive. Here we show that MAL TIR domains spontaneously and reversibly form filaments in vitro. They also form cofilaments with TLR4 TIR domains and induce formation of MyD88 assemblies. A 7-Å-resolution cryo-EM structure reveals a stable MAL protofilament consisting of two parallel strands of TIR-domain subunits in a BB-loop-mediated head-to-tail arrangement. Interface residues that are important for the interaction are conserved among different TIR domains. Although large filaments of TLR4, MAL or MyD88 are unlikely to form during cellular signaling, structure-guided mutagenesis, combined with in vivo interaction assays, demonstrated that the MAL interactions defined within the filament represent a template for a conserved mode of TIR-domain interaction involved in both TLR and interleukin-1 receptor signaling.


Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , Myelin and Lymphocyte-Associated Proteolipid Proteins/ultrastructure , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/ultrastructure , Protein Multimerization , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/ultrastructure , Cell Line , Cryoelectron Microscopy , DNA Mutational Analysis , Humans , Models, Molecular , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Protein Conformation , Protein Domains , Signal Transduction
17.
Sci Rep ; 7(1): 7072, 2017 08 01.
Article En | MEDLINE | ID: mdl-28765539

Bacterial outer membrane vesicles (OMVs) are extracellular sacs containing biologically active products, such as proteins, cell wall components and toxins. OMVs are reported to contain DNA, however, little is known about the nature of this DNA, nor whether it can be transported into host cells. Our work demonstrates that chromosomal DNA is packaged into OMVs shed by bacteria during exponential phase. Most of this DNA was present on the external surfaces of OMVs, with smaller amounts located internally. The DNA within the internal compartments of Pseudomonas aeruginosa OMVs were consistently enriched in specific regions of the bacterial chromosome, encoding proteins involved in virulence, stress response, antibiotic resistance and metabolism. Furthermore, we demonstrated that OMVs carry DNA into eukaryotic cells, and this DNA was detectable by PCR in the nuclear fraction of cells. These findings suggest a role for OMV-associated DNA in bacterial-host cell interactions and have implications for OMV-based vaccines.


DNA, Bacterial/metabolism , Endocytosis , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Extracellular Vesicles/metabolism , Gram-Negative Bacteria/metabolism , Cell Line , Humans
18.
Mol Immunol ; 86: 23-37, 2017 06.
Article En | MEDLINE | ID: mdl-28249680

The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes.


Immunity, Innate , Inflammasomes/immunology , NLR Proteins/metabolism , Receptors, Pattern Recognition/metabolism , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Caspase Activation and Recruitment Domain , DEAD Box Protein 58/metabolism , Fungi/physiology , Humans , NLR Proteins/chemistry , Plants/immunology , Receptors, Immunologic , Receptors, Pattern Recognition/chemistry , Toll-Like Receptors/metabolism
19.
Immunol Cell Biol ; 95(5): 491-495, 2017 05.
Article En | MEDLINE | ID: mdl-28220810

The secreted hexameric form of the dengue virus (DENV) non-structural protein 1 (NS1) has recently been shown to elicit inflammatory cytokine release and disrupt endothelial cell monolayer integrity. This suggests that circulating NS1 contributes to the vascular leak that plays a major role in the pathology of dengue haemorrhagic fever and shock. Pathways activated by NS1 are thus of great interest as potential therapeutic targets. Recent works have separately implicated both toll-like receptor 4 (TLR4) and the TLR2/6 heterodimer in immune cell activation by NS1. Here we have used mouse gene knockout macrophages and antibodies blocking TLR function in human peripheral blood mononuclear cells to show that recombinant NS1, expressed and purified from eukaryotic cells, induces cytokine production via TLR4 but not TLR2/6. Furthermore, the commercial Escherichia coli-derived recombinant NS1 preparation used in other work to implicate TLR2/6 in the response is not correctly folded and appears to be contaminated by several microbial TLR ligands. Thus TLR4 remains a therapeutic target for DENV infections, with TLR4 antagonists holding promise for the treatment of dengue disease.


Dengue Virus/immunology , Leukocytes/virology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 6/metabolism , Viral Nonstructural Proteins/immunology , Animals , Dengue Virus/drug effects , Escherichia coli/metabolism , Humans , Leukocytes/drug effects , Leukocytes/pathology , Lipopolysaccharides , Mice, Inbred C57BL , Polymyxin B/pharmacology , Protein Multimerization/drug effects
20.
Mol Cell ; 64(2): 236-250, 2016 10 20.
Article En | MEDLINE | ID: mdl-27746017

Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.


CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/chemistry , Death Domain Receptor Signaling Adaptor Proteins/chemistry , Fas-Associated Death Domain Protein/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Apoptosis/drug effects , Binding Sites , CARD Signaling Adaptor Proteins , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cryoelectron Microscopy , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Death Domain Receptor Signaling Adaptor Proteins/genetics , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Death Effector Domain , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Gene Expression , Humans , Jurkat Cells , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transfection , Viral Proteins/genetics , Viral Proteins/metabolism , fas Receptor/pharmacology
...