Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32661121

RESUMEN

Typhoid toxin is a virulence factor of Salmonella enterica serovar Typhi, the causative agent of typhoid fever, and is thought to be responsible for the symptoms of severe disease. This toxin has a unique A2B5 architecture with two active subunits, the ADP ribosyl transferase PltA and the DNase CdtB, linked to a pentameric B subunit, which is alternatively made of PltB or PltC. Here, we describe the generation and characterization of typhoid toxin-neutralizing human monoclonal antibodies by immunizing genetically engineered mice that have a full set of human immunoglobulin variable region genes. We identified several monoclonal antibodies with strong in vitro and in vivo toxin-neutralizing activity and different mechanisms of toxin neutralization. These antibodies could serve as the basis for the development of novel therapeutic strategies against typhoid fever.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Toxinas Bacterianas/inmunología , Salmonella typhi/inmunología , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Línea Celular , Humanos , Ratones , Ratones Transgénicos , Pruebas de Neutralización , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Salmonella typhi/genética , Fiebre Tifoidea/prevención & control
2.
Nat Commun ; 10(1): 3684, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417089

RESUMEN

Bacterial toxins with an AB5 architecture consist of an active (A) subunit inserted into a ring-like platform comprised of five delivery (B) subunits. Salmonella Typhi, the cause of typhoid fever, produces an unusual A2B5 toxin known as typhoid toxin. Here, we report that upon infection of human cells, S. Typhi produces two forms of typhoid toxin that have distinct delivery components but share common active subunits. The two typhoid toxins exhibit different trafficking properties, elicit different effects when administered to laboratory animals, and are expressed using different regulatory mechanisms and in response to distinct metabolic cues. Collectively, these results indicate that the evolution of two typhoid toxin variants has conferred functional versatility to this virulence factor. More broadly, this study reveals a new paradigm in toxin biology and suggests that the evolutionary expansion of AB5 toxins was likely fueled by the plasticity inherent to their structural design coupled to the functional versatility afforded by the combination of homologous toxin components.


Asunto(s)
Toxinas Bacterianas/genética , Multimerización de Proteína/genética , Salmonella typhi/genética , Factores de Virulencia/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Subunidades de Proteína/genética , Homología de Secuencia de Ácido Nucleico
3.
Nat Med ; 25(7): 1082-1088, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270506

RESUMEN

Salmonella Typhi is a human host-restricted pathogen that is responsible for typhoid fever in approximately 10.9 million people annually1. The typhoid toxin is postulated to have a central role in disease pathogenesis, the establishment of chronic infection and human host restriction2-6. However, its precise role in typhoid disease in humans is not fully defined. We studied the role of typhoid toxin in acute infection using a randomized, double-blind S. Typhi human challenge model7. Forty healthy volunteers were randomized (1:1) to oral challenge with 104 colony-forming units of wild-type or an isogenic typhoid toxin deletion mutant (TN) of S. Typhi. We observed no significant difference in the rate of typhoid infection (fever ≥38 °C for ≥12 h and/or S. Typhi bacteremia) between participants challenged with wild-type or TN S. Typhi (15 out of 21 (71%) versus 15 out of 19 (79%); P = 0.58). The duration of bacteremia was significantly longer in participants challenged with the TN strain compared with wild-type (47.6 hours (28.9-97.0) versus 30.3(3.6-49.4); P ≤ 0.001). The clinical syndrome was otherwise indistinguishable between wild-type and TN groups. These data suggest that the typhoid toxin is not required for infection and the development of early typhoid fever symptoms within the context of a human challenge model. Further clinical data are required to assess the role of typhoid toxin in severe disease or the establishment of bacterial carriage.


Asunto(s)
Toxinas Bacterianas/toxicidad , Salmonella typhi/patogenicidad , Fiebre Tifoidea/etiología , Enfermedad Aguda , Adolescente , Adulto , Animales , Método Doble Ciego , Humanos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fiebre Tifoidea/inmunología , Fiebre Tifoidea/patología , Adulto Joven
4.
Nat Microbiol ; 2(12): 1697, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29093550

RESUMEN

The original version of this Letter has been modified in the abstract and main text to better reflect the distribution of Neu5Ac sialoglycans in humans. Additionally, co-author Lingquan Deng's present address has been further clarified.

5.
Nat Microbiol ; 2(12): 1592-1599, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28993610

RESUMEN

The evolution of virulence traits is central for the emergence or re-emergence of microbial pathogens and for their adaptation to a specific host 1-5 . Typhoid toxin is an essential virulence factor of the human-adapted bacterial pathogen Salmonella Typhi 6,7 , the cause of typhoid fever in humans 8-12 . Typhoid toxin has a unique A2B5 architecture with two covalently linked enzymatic 'A' subunits, PltA and CdtB, associated with a homopentameric 'B' subunit made up of PltB, which has binding specificity for the N-acetylneuraminic acid (Neu5Ac) sialoglycans 6,13 prominently present in humans 14 . Here, we examine the functional and structural relationship between typhoid toxin and ArtAB, an evolutionarily related AB5 toxin encoded by the broad-host Salmonella Typhimurium 15 . We find that ArtA and ArtB, homologues of PltA and PltB, can form a functional complex with the typhoid toxin CdtB subunit after substitution of a single amino acid in ArtA, while ArtB can form a functional complex with wild-type PltA and CdtB. We also found that, after addition of a single-terminal Cys residue, a CdtB homologue from cytolethal distending toxin can form a functional complex with ArtA and ArtB. In line with the broad host specificity of S. Typhimurium, we found that ArtB binds human glycans, terminated in N-acetylneuraminic acid, as well as glycans terminated in N-glycolylneuraminic acid (Neu5Gc), which are expressed in most other mammals 14 . The atomic structure of ArtB bound to its receptor shows the presence of an additional glycan-binding site, which broadens its binding specificity. Despite equivalent toxicity in vitro, we found that the ArtB/PltA/CdtB chimaeric toxin exhibits reduced lethality in an animal model, indicating that the host specialization of typhoid toxin has optimized its targeting mechanisms to the human host. This is a remarkable example of a toxin evolving to broaden its enzymatic activities and adapt to a specific host.


Asunto(s)
Adaptación Fisiológica , Endotoxinas/toxicidad , Especificidad del Huésped/efectos de los fármacos , Especificidad del Huésped/fisiología , Salmonella typhi/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Glicómica , Células HEK293 , Humanos , Masculino , Ratones , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Polisacáridos/metabolismo , Salmonella typhi/patogenicidad , Factores de Transcripción , Fiebre Tifoidea/microbiología , Factores de Virulencia
6.
J Clin Invest ; 127(4): 1463-1474, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28240600

RESUMEN

The antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) inhibits cell entry of a number of viruses, and genetic diversity within IFITM3 determines susceptibility to viral disease in humans. Here, we used the murine CMV (MCMV) model of infection to determine that IFITM3 limits herpesvirus-associated pathogenesis without directly preventing virus replication. Instead, IFITM3 promoted antiviral cellular immunity through the restriction of virus-induced lymphopenia, apoptosis-independent NK cell death, and loss of T cells. Viral disease in Ifitm3-/- mice was accompanied by elevated production of cytokines, most notably IL-6. IFITM3 inhibited IL-6 production by myeloid cells in response to replicating and nonreplicating virus as well as following stimulation with the TLR ligands Poly(I:C) and CpG. Although IL-6 promoted virus-specific T cell responses, uncontrolled IL-6 expression in Ifitm3-/- mice triggered the loss of NK cells and subsequently impaired control of MCMV replication. Thus, IFITM3 represents a checkpoint regulator of antiviral immunity that controls cytokine production to restrict viral pathogenesis. These data suggest the utility of cytokine-targeting strategies in the treatment of virus-infected individuals with impaired IFITM3 activity.


Asunto(s)
Citocinas/fisiología , Infecciones por Herpesviridae/metabolismo , Proteínas de la Membrana/fisiología , Animales , Células Cultivadas , Infecciones por Herpesviridae/inmunología , Inmunidad Celular , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Muromegalovirus/fisiología , Receptores de Interleucina-6/metabolismo , Transducción de Señal , Internalización del Virus , Replicación Viral
7.
Curr Opin Microbiol ; 35: 70-77, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28213043

RESUMEN

Typhoid toxin is a unique A2B5 exotoxin and an important virulence factor for Salmonella Typhi, the cause of typhoid fever. In the decade since its initial discovery, great strides have been made in deciphering the unusual biological program of this toxin, which is fundamentally different from related toxins in many ways. Purified typhoid toxin administered to laboratory animals causes many of the symptoms of typhoid fever, suggesting that typhoid toxin is a central factor in this disease. Further advances in understanding the biology of this toxin will help guide the development of badly needed diagnostics and therapeutic interventions that target this toxin to detect, prevent or treat typhoid fever.


Asunto(s)
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Salmonella typhi/patogenicidad , Animales , Humanos , Ratones , Salmonella typhi/metabolismo , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/fisiopatología , Fiebre Tifoidea/prevención & control , Fiebre Tifoidea/terapia , Factores de Virulencia/metabolismo
8.
Front Immunol ; 7: 211, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303405

RESUMEN

Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines. Hematopoietic cells express IL-22, and this cytokine signals through the heterodimeric IL-22 receptor expressed by non-hematopoietic cells. A growing body of evidence points toward a role for IL-22 in a diverse array of biological functions ranging from cellular proliferation, tissue protection and regeneration, and inflammation. In recent years, the role that IL-22 plays in antiviral immune responses has been examined in a number of infection models. Herein, we assess our current understanding of how IL-22 determines the outcome of viral infections and define common mechanisms that are evident from, sometimes paradoxical, findings derived from these studies. Finally, we discuss the potential therapeutic utility of IL-22 manipulation in the treatment and prevention of viral infections and associated pathologies.

9.
PLoS Pathog ; 11(2): e1004641, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25654642

RESUMEN

CD200 receptor (CD200R) negatively regulates peripheral and mucosal innate immune responses. Viruses, including herpesviruses, have acquired functional CD200 orthologs, implying that viral exploitation of this pathway is evolutionary advantageous. However, the role that CD200R signaling plays during herpesvirus infection in vivo requires clarification. Utilizing the murine cytomegalovirus (MCMV) model, we demonstrate that CD200R facilitates virus persistence within mucosal tissue. Specifically, MCMV infection of CD200R-deficient mice (CD200R(-/-)) elicited heightened mucosal virus-specific CD4 T cell responses that restricted virus persistence in the salivary glands. CD200R did not directly inhibit lymphocyte effector function. Instead, CD200R(-/-) mice exhibited enhanced APC accumulation that in the mucosa was a consequence of elevated cellular proliferation. Although MCMV does not encode an obvious CD200 homolog, productive replication in macrophages induced expression of cellular CD200. CD200 from hematopoietic and non-hematopoietic cells contributed independently to suppression of antiviral control in vivo. These results highlight the CD200-CD200R pathway as an important regulator of antiviral immunity during cytomegalovirus infection that is exploited by MCMV to establish chronicity within mucosal tissue.


Asunto(s)
Antígenos CD/inmunología , Infecciones por Citomegalovirus/inmunología , Macrófagos/inmunología , Membrana Mucosa/inmunología , Membrana Mucosa/virología , Animales , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Macrófagos/metabolismo , Macrófagos/virología , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Cell Host Microbe ; 15(4): 471-83, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24721575

RESUMEN

During primary infection, murine cytomegalovirus (MCMV) spreads systemically, resulting in virus replication and pathology in multiple organs. This disseminated infection is ultimately controlled, but the underlying immune defense mechanisms are unclear. Investigating the role of the cytokine IL-22 in MCMV infection, we discovered an unanticipated function for neutrophils as potent antiviral effector cells that restrict viral replication and associated pathogenesis in peripheral organs. NK-, NKT-, and T cell-secreted IL-22 orchestrated antiviral neutrophil-mediated responses via induction in stromal nonhematopoietic tissue of the neutrophil-recruiting chemokine CXCL1. The antiviral effector properties of infiltrating neutrophils were directly linked to the expression of TNF-related apoptosis-inducing ligand (TRAIL). Our data identify a role for neutrophils in antiviral defense, and establish a functional link between IL-22 and the control of antiviral neutrophil responses that prevents pathogenic herpesvirus infection in peripheral organs.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Interleucinas/inmunología , Muromegalovirus/inmunología , Neutrófilos/inmunología , Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis , Animales , Antivirales , Quimiocina CXCL1/inmunología , Infecciones por Herpesviridae/patología , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Muromegalovirus/patogenicidad , Células T Asesinas Naturales/inmunología , Replicación Viral/inmunología , Interleucina-22
11.
Viruses ; 4(8): 1182-201, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23012619

RESUMEN

Herpesviruses employ a plethora of mechanisms to circumvent clearance by host immune responses. A key feature of mammalian immune systems is the employment of regulatory pathways that limit immune responsiveness. The primary functions of these mechanisms are to control autoimmunity and limit exuberant responses to harmless antigen in mucosal surfaces. However, such pathways can be exploited by viral pathogens to enable acute infection, persistence and dissemination. Herein, we outline the current understanding of inhibitory pathways in modulating antiviral immunity during herpesvirus infections in vivo and discuss strategies employed by herpesviruses to exploit these pathways to limit host antiviral immunity.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Herpesviridae/inmunología , Sistema Inmunológico/inmunología , Animales , Herpesviridae/genética , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...