Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838810

RESUMEN

New strategies facilitate the design of cyclic peptides which can penetrate the brain. We have designed a bicyclic peptide, OL-CTOP, composed of the sequences of a selective µ-opioid receptor antagonist, CTOP (f-cyclo(CYwOTX)T) (X = penicillamine, Pen; O = ornithine) and odorranalectin, OL (YASPK-cyclo(CFRYPNGVLAC)T), optimized its solid-phase synthesis and demonstrated its ability for nose-to-brain delivery and in vivo activity. The differences in reactivity of Cys and Pen thiol groups protected with trityl and/or acetamidomethyl protecting groups toward I2 in different solvents were exploited for selective disulfide bond formation on the solid phase. Both the single step and the sequential strategy applied to macrocyclization reactions generated the desired OL-CTOP, with the sequential strategy yielding a large quantity and better purity of crude OL-CTOP. Importantly, intranasally (i.n.s.) administered OL-CTOP dose-dependently antagonized the analgesic effect of morphine administered to mice through the intracerebroventricular route and prevented morphine-induced respiratory depression. In summary, the results demonstrate the feasibility of our solid-phase synthetic strategy for the preparation of the OL-CTOP bicyclic peptide containing two disulfide bonds and reveal the potential of odorranalectin for further modifications and the targeted delivery to the brain.


Asunto(s)
Técnicas de Síntesis en Fase Sólida , Somatostatina , Ratones , Animales , Administración Intranasal , Somatostatina/farmacología , Receptores Opioides mu , Péptidos/farmacología , Morfina/farmacología
2.
Molecules ; 27(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35684553

RESUMEN

Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10-45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED50 (and 95% C.I.) = 14.7 (10.6-20) mg/kg, i.p.) and the formalin assay (ED50 (and 95% C.I.) = 0.86 (0.44-1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain.


Asunto(s)
Neuralgia , Receptores sigma , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Ligandos , Masculino , Ratones , Neuralgia/tratamiento farmacológico
3.
Proteomics ; 22(9): e2100137, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35081661

RESUMEN

As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1-10 µM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 µM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Dolor Crónico/metabolismo , Cisplatino , Modelos Animales de Enfermedad , Código de Histonas , Histonas/metabolismo , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuralgia/metabolismo , Proteómica
4.
J Neuroimmune Pharmacol ; 17(1-2): 152-164, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33619645

RESUMEN

Despite the success of combined antiretroviral therapy (cART) in reducing viral load, a substantial portion of Human Immunodeficiency Virus (HIV)+ patients report chronic pain. The exact mechanism underlying this co-morbidity even with undetectable viral load remains unknown, but the transactivator of transcription (HIV-Tat) protein is of particular interest. Functional HIV-Tat protein is observed even in cerebrospinal fluid of patients who have an undetectable viral load. It is hypothesized that Tat protein exposure is sufficient to induce neuropathic pain-like manifestations via both activation of microglia and generation of oxidative stress. iTat mice conditionally expressed Tat(1-86) protein in the central nervous system upon daily administration of doxycycline (100 mg/kg/d, i.p., up to 14 days). The effect of HIV-Tat protein exposure on the well-being of the animal was assessed using sucrose-evoked grooming and acute nesting behavior for pain-depressed behaviors, and the development of hyperalgesia assessed with warm-water tail-withdrawal and von Frey assays for thermal hyperalgesia and mechanical allodynia, respectively. Tissue harvested at select time points was used to assess ex vivo alterations in oxidative stress, astrocytosis and microgliosis, and blood-brain barrier integrity with assays utilizing fluorescence-based indicators. Tat protein induced mild thermal hyperalgesia but robust mechanical allodynia starting after 4 days of exposure, reaching a nadir after 7 days. Changes in nociceptive processing were associated with reduced sucrose-evoked grooming behavior without altering acute nesting behavior, and in spinal cord dysregulated free radical generation as measured by DCF fluorescence intensity, altered immunohistochemical expression of the gliotic markers, Iba-1 and GFAP, and increased permeability of the blood-brain barrier to the small molecule fluorescent tracer, sodium fluorescein, in a time-dependent manner. Pretreatment with the anti-inflammatory, indomethacin (1 mg/kg/d, i.p.), the antioxidant, methylsulfonylmethane (100 mg/kg/d i.p.), or the immunomodulatory agent, dimethylfumarate (100 mg/kg/d p.o.) thirty minutes prior to daily injections of doxycycline (100 mg/kg/d i.p.) over 7 days significantly attenuated the development of Tat-induced mechanical allodynia. Collectively, the data suggests that even acute exposure to HIV-1 Tat protein at pathologically relevant levels is sufficient to produce select neurophysiological and behavioral manifestations of chronic pain consistent with that reported by HIV-positive patients.


Asunto(s)
Dolor Crónico , Infecciones por VIH , Humanos , Ratones , Animales , Antioxidantes/farmacología , VIH , Transactivadores , Dolor Crónico/tratamiento farmacológico , Antiinflamatorios , Productos del Gen tat , Infecciones por VIH/tratamiento farmacológico , Sacarosa
5.
Cell Mol Neurobiol ; 41(5): 1131-1143, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33433723

RESUMEN

Chronic administration of opioids produces physical dependence and opioid-induced hyperalgesia. Users claim the Thai traditional tea "kratom" and component alkaloid mitragynine ameliorate opioid withdrawal without increased sensitivity to pain. Testing these claims, we assessed the combined kratom alkaloid extract (KAE) and two individual alkaloids, mitragynine (MG) and the analog mitragynine pseudoindoxyl (MP), evaluating their ability to produce physical dependence and induce hyperalgesia after chronic administration, and as treatments for withdrawal in morphine-dependent subjects. C57BL/6J mice (n = 10/drug) were administered repeated saline, or graded, escalating doses of morphine (intraperitoneal; i.p.), kratom alkaloid extract (orally, p.o.), mitragynine (p.o.), or MP (subcutaneously, s.c.) for 5 days. Mice treated chronically with morphine, KAE, or mitragynine demonstrated significant drug-induced hyperalgesia by day 5 in a 48 °C warm-water tail-withdrawal test. Mice were then administered naloxone (10 mg/kg, s.c.) and tested for opioid withdrawal signs. Kratom alkaloid extract and the two individual alkaloids demonstrated significantly fewer naloxone-precipitated withdrawal signs than morphine-treated mice. Additional C57BL/6J mice made physically dependent on morphine were then used to test the therapeutic potential of combined KAE, mitragynine, or MP given twice daily over the next 3 days at either a fixed dose or in graded, tapering descending doses. When administered naloxone, mice treated with KAE, mitragynine, or MP under either regimen demonstrated significantly fewer signs of precipitated withdrawal than control mice that continued to receive morphine. In conclusion, while retaining some liabilities, kratom, mitragynine, and mitragynine pseudoindoxyl produced significantly less physical dependence and ameliorated precipitated withdrawal in morphine-dependent animals, suggesting some clinical value.


Asunto(s)
Analgésicos Opioides/efectos adversos , Mitragyna , Dependencia de Morfina/prevención & control , Alcaloides de Triptamina Secologanina/administración & dosificación , Alcaloides de Triptamina Secologanina/síntesis química , Síndrome de Abstinencia a Sustancias/prevención & control , Analgésicos Opioides/administración & dosificación , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Dependencia de Morfina/metabolismo , Dependencia de Morfina/psicología , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Alcaloides de Triptamina Secologanina/efectos adversos , Alcaloides de Triptamina Secologanina/aislamiento & purificación , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/psicología
6.
Drug Alcohol Depend ; 216: 108310, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017752

RESUMEN

BACKGROUND: Made as a tea, the Thai traditional drug "kratom" reportedly possesses pharmacological actions that include both a coca-like stimulant effect and opium-like depressant effect. Kratom has been used as a substitute for opium in physically-dependent subjects. The objective of this study was to evaluate the antinociception, somatic and physical dependence produced by kratom tea, and then assess if the tea ameliorated withdrawal in opioid physically-dependent subjects. METHODS: Lyophilized kratom tea (LKT) was evaluated in C57BL/6J and opioid receptor knockout mice after oral administration. Antinociceptive activity was measured in the 55 °C warm-water tail-withdrawal assay. Potential locomotor impairment, respiratory depression and locomotor hyperlocomotion, and place preference induced by oral LKT were assessed in the rotarod, Comprehensive Lab Animal Monitoring System, and conditioned place preference assays, respectively. Naloxone-precipitated withdrawal was used to determine potential physical dependence in mice repeatedly treated with saline or escalating doses of morphine or LKT, and LKT amelioration of morphine withdrawal. Data were analyzed using one- and two-way ANOVA. RESULTS: Oral administration of LKT resulted in dose-dependent antinociception (≥1 g/kg, p.o.) absent in mice lacking the mu-opioid receptor (MOR) and reduced in mice lacking the kappa-opioid receptor. These doses of LKT did not alter coordinated locomotion or induce conditioned place preference, and only briefly reduced respiration. Repeated administration of LKT did not produce physical dependence, but significantly decreased naloxone-precipitated withdrawal in morphine dependent mice. CONCLUSIONS: The present study confirms the MOR agonist activity and therapeutic effect of LKT for the treatment of pain and opioid physical dependence.


Asunto(s)
Mitragyna , Dependencia de Morfina/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Receptores Opioides mu/agonistas , , Analgésicos Opioides/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Liofilización/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfina/administración & dosificación , Dependencia de Morfina/fisiopatología , Dependencia de Morfina/psicología , Naloxona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Dimensión del Dolor/métodos , Extractos Vegetales/aislamiento & purificación , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/deficiencia , Receptores Opioides mu/deficiencia
7.
Br J Pharmacol ; 177(18): 4209-4222, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562259

RESUMEN

BACKGROUND AND PURPOSE: The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) is a multifunctional µ-opioid receptor and κ-opioid receptor agonist and κ-opioid receptor antagonist that produces antinociception and prevents stress-induced reinstatement of extinguished cocaine-conditioned place preference (CPP). We hypothesized that an analogue of CJ-15,208, cyclo[Pro-Sar-Phe-d-Phe], would demonstrate multifunctional µ-opioid receptor and κ-opioid receptor ligand activity, producing potent antinociception with fewer liabilities than selective µ-opioid receptor agonists, while preventing both drug- and stress-induced reinstatement of morphine-induced CPP. EXPERIMENTAL APPROACH: The opioid receptor agonist and antagonist activity of cyclo[Pro-Sar-Phe-d-Phe] was characterized after i.c.v. and i.p. administration to C57BL/6J or transgenic opioid receptor "knockout" mice using the 55°C warm-water tail-withdrawal assay. Liabilities of locomotor coordination, respiration and spontaneous ambulation, and direct rewarding or aversive properties were assessed. Finally, the ability of cyclo[Pro-Sar-Phe-d-Phe] to block morphine- and stress-induced reinstatement of extinguished CPP was determined. KEY RESULTS: cyclo[Pro-Sar-Phe-d-Phe] demonstrated dose-dependent, short-lasting antinociception, with an ED50 (and 95% confidence interval) of 0.15 (0.05-0.21) nmol i.c.v. and 1.91 (0.40-3.54) mg·kg-1 i.p., mediated by µ- and κ-opioid receptors. The macrocyclic tetrapeptide also demonstrated potent dose-dependent κ-opioid receptor antagonist-like activity at 2.5, but not at 4.5, h after administration. cyclo[Pro-Sar-Phe-d-Phe] displayed reduced liabiities compared with morphine, attributed to its additional activity at κ-receptors. Pretreatment with cyclo[Pro-Sar-Phe-d-Phe] prevented stress- and drug-induced reinstatement of extinguished morphine-place preference responses in a time-dependent manner. CONCLUSIONS AND IMPLICATIONS: These data suggest that cyclo[Pro-Sar-Phe-d-Phe] is a promising lead compound for both the treatment of pain with reduced sideeffects and preventing both drug- and stress-induced relapse in morphine-abstinent subjects.


Asunto(s)
Morfina , Preparaciones Farmacéuticas , Receptores Opioides mu , Analgésicos Opioides/farmacología , Animales , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Antagonistas de Narcóticos , Receptores Opioides , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inhibidores
8.
ACS Chem Neurosci ; 11(9): 1324-1336, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251585

RESUMEN

Substance abuse remains a serious public health crisis, affecting millions of people worldwide. Macrocyclic tetrapeptides like CJ-15,208 and [d-Trp]CJ-15,208 demonstrate opioid activity shown to attenuate the rewarding effects of cocaine in conditioned place preference assays in mice, making them promising lead compounds for treating substance abuse. In the present study, we report the rational design, synthesis, conformational analysis, and continued pharmacological evaluation of the novel macrocyclic tetrapeptide cyclo[Pro-Sar-Phe-d-Phe] to further explore this unique molecular scaffold. This peptide was rationally designed based on X-ray and NMR structures of related macrocyclic tetrapeptides. Following synthesis, its solution-phase conformations were determined by NMR and molecular modeling. The peptide adopted multiple conformations in polar solvents, but a single conformation in chloroform that is stabilized by intramolecular hydrogen bonding. The peptide is orally bioavailable, producing antinociception and antagonism of kappa opioid receptor (KOR) stimulation following oral administration in a mouse 55 °C warm-water tail-withdrawal assay. Notably, cyclo[Pro-Sar-Phe-d-Phe] blocked both stress- and drug-induced reinstatement of cocaine and morphine conditioned place preference in mice following oral administration, and displayed a decreased side-effect profile compared to morphine. Thus, cyclo[Pro-Sar-Phe-d-Phe] is a promising lead compound for the treatment of substance abuse.


Asunto(s)
Analgésicos Opioides , Antagonistas de Narcóticos , Administración Oral , Animales , Ratones , Ratones Endogámicos C57BL , Oligopéptidos , Péptidos Cíclicos , Receptores Opioides kappa , Receptores Opioides mu
9.
J Med Chem ; 63(10): 5119-5138, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31913038

RESUMEN

Innovative discovery strategies are essential to address the ongoing opioid epidemic in the United States. Misuse of prescription and illegal opioids (e.g., morphine, heroin) has led to major problems with addiction and overdose. We used vincamine, an indole alkaloid, as a synthetic starting point for dramatic structural alterations of its complex, fused ring system to synthesize 80 diverse compounds with intricate molecular architectures. A select series of vincamine-derived compounds were screened for both agonistic and antagonistic activities against a panel of 168 G protein-coupled receptor (GPCR) drug targets. Although vincamine was without an effect, the novel compound 4 (V2a) demonstrated antagonistic activities against hypocretin (orexin) receptor 2. When advanced to animal studies, 4 (V2a) significantly prevented acute morphine-conditioned place preference (CPP) and stress-induced reinstatement of extinguished morphine-CPP in mouse models of opioid reward and relapse. These results demonstrate that the ring distortion of vincamine offers a promising way to explore new chemical space of relevance to opioid addiction.


Asunto(s)
Ingeniería Química/métodos , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Morfina/administración & dosificación , Vincamina/administración & dosificación , Vincamina/síntesis química , Animales , Comportamiento de Búsqueda de Drogas/fisiología , Inyecciones Intraperitoneales , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/metabolismo , Antagonistas de los Receptores de Orexina/administración & dosificación , Antagonistas de los Receptores de Orexina/síntesis química , Antagonistas de los Receptores de Orexina/metabolismo , Receptores de Orexina/metabolismo , Estructura Secundaria de Proteína , Vincamina/metabolismo
10.
PLoS One ; 13(5): e0197940, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795658

RESUMEN

Kava is regaining its popularity with detailed characterizations warranted. We developed an ultraperformance liquid chromatography high-resolution tandem mass spectrometry (UPLC-MS/MS) method for major kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin and desmethoxyyangonin) with excellent selectivity and specificity. The method has been validated for different matrices following the Food and Drug Administration guidance of analytical procedures and methods validation. The scope of this method has been demonstrated by quantifying these kavalactones in two kava products, characterizing their tissue distribution and pharmacokinetics in mice, and detecting their presence in human urines and plasmas upon kava intake. As expected, the abundances of these kavalactones differed significantly in kava products. All of them exhibited a large volume of distribution with extensive tissue affinity and adequate mean residence time (MRT) in mice. This method also successfully quantified these kavalactones in human body fluids upon kava consumption at the recommended human dose. This UPLC-MS/MS method therefore can be used to characterize kava products and its pharmacokinetics in animals and in humans.


Asunto(s)
Kava/química , Lactonas/administración & dosificación , Lactonas/análisis , Técnica de Dilución de Radioisótopos , Espectrometría de Masas en Tándem/métodos , Animales , Humanos , Lactonas/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Pironas/administración & dosificación , Pironas/análisis , Pironas/farmacocinética , Distribución Tisular , Urinálisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-29057370

RESUMEN

BACKGROUND: The prevalence of major depression in those with HIV/AIDS is substantially higher than in the general population. Mechanisms underlying this comorbidity are poorly understood. HIV-transactivator of transcription (Tat) protein, produced and excreted by HIV, could be involved. We determined whether conditional Tat protein expression in mice is sufficient to induce depression-like behaviors and oxidative stress. Further, as oxidative stress is associated with depression, we determined whether decreasing or increasing oxidative stress by administering methylsulfonylmethane (MSM) or diethylmaleate (DEM), respectively, altered depression-like behavior. METHODS: GT-tg bigenic mice received intraperitoneal saline or doxycycline (Dox, 25-100 mg/kg/day) to induce Tat expression. G-tg mice, which do not express Tat protein, also received Dox. Depression-like behavior was assessed with the tail suspension test (TST) and the two-bottle saccharin/water consumption task. Reactive oxygen/nitrogen species (ROS/RNS) were assessed ex vivo. Medial frontal cortex (MFC) oxidative stress and temperature were measured in vivo with 9.4-Tesla proton magnetic resonance spectroscopy (MRS). RESULTS: Tat expression increased TST immobility time in an exposure-dependent manner and reduced saccharin consumption. MSM decreased immobility time while DEM increased it in saline-treated GT-tg mice. Tat and MSM behavioral effects persisted for 28 days. Tat and DEM increased while MSM decreased ROS/RNS levels. Tat expression increased MFC glutathione levels and temperature. CONCLUSIONS: Tat expression induced rapid and enduring depression-like behaviors and oxidative stress. Increasing/decreasing oxidative stress increased/decreased, respectively, depression-like behavior. Thus, Tat produced by HIV may contribute to the high depression prevalence among those with HIV. Further, mitigation of oxidative stress could reduce depression severity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...