Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Physiol Genomics ; 56(1): 98-111, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37955135

Salt sensitivity impacts a significant portion of the population and is an important contributor to the development of chronic kidney disease. One of the significant early predictors of salt-induced damage is albuminuria, which reflects the deterioration of the renal filtration barrier: the glomerulus. Despite significant research efforts, there is still a gap in knowledge regarding the molecular mechanisms and signaling networks contributing to instigating and/or perpetuating salt-induced glomerular injury. To address this gap, we used 8-wk-old male Dahl salt-sensitive rats fed a normal-salt diet (0.4% NaCl) or challenged with a high-salt diet (4% NaCl) for 3 wk. At the end of the protocol, a pure fraction of renal glomeruli obtained by differential sieving was used for next-generation RNA sequencing and comprehensive semi-automatic transcriptomic data analyses, which revealed 149 differentially expressed genes (107 and 42 genes were downregulated and upregulated, respectively). Furthermore, a combination of predictive gene correlation networks and computational bioinformatic analyses revealed pathways impacted by a high salt dietary challenge, including renal metabolism, mitochondrial function, apoptotic signaling and fibrosis, cell cycle, inflammatory and immune responses, circadian clock, cytoskeletal organization, G protein-coupled receptor signaling, and calcium transport. In conclusion, we report here novel transcriptomic interactions and corresponding predicted pathways affecting glomeruli under salt-induced stress.NEW & NOTEWORTHY Our study demonstrated novel pathways affecting glomeruli under stress induced by dietary salt. Predictive gene correlation networks and bioinformatic semi-automatic analysis revealed changes in the pathways relevant to mitochondrial function, inflammatory, apoptotic/fibrotic processes, and cell calcium transport.


Hypertension , Sodium Chloride, Dietary , Rats , Animals , Male , Sodium Chloride, Dietary/adverse effects , Sodium Chloride/metabolism , Hypertension/genetics , Rats, Inbred Dahl , Blood Pressure , Calcium/metabolism , Transcriptome/genetics , Gene Expression Profiling , Kidney/metabolism
2.
Compr Physiol ; 14(1): 5225-5242, 2023 12 29.
Article En | MEDLINE | ID: mdl-38158371

According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.


Hypertension, Renal , Hypertension , Humans , Kidney/metabolism , Mitochondria/metabolism , Oxidative Stress , Hypertension, Renal/metabolism
3.
Trends Endocrinol Metab ; 34(11): 764-777, 2023 11.
Article En | MEDLINE | ID: mdl-37633800

Lysosomes are cellular organelles that function to catabolize both extra- and intracellular cargo, act as a platform for nutrient sensing, and represent a core signaling node integrating bioenergetic cues to changes in cellular metabolism. Although lysosomal amino acid and lipid sensing in metabolism has been well characterized, lysosomal glucose sensing and the role of lysosomes in glucose metabolism is unrefined. This review will highlight the role of the lysosome in glucose metabolism with a focus on lysosomal glucose and glycogen sensing, glycophagy, and lysosomal glucose transport and how these processes impact autophagy and energy metabolism. Additionally, the role of lysosomal glucose metabolism in genetic and metabolic diseases will be briefly discussed.


Autophagy , Lysosomes , Humans , Lysosomes/metabolism , Glycogen/metabolism , Glucose/metabolism , Energy Metabolism
4.
Am J Physiol Renal Physiol ; 325(2): F135-F149, 2023 08 01.
Article En | MEDLINE | ID: mdl-37262088

Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.


Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Kidney/metabolism , Oxidation-Reduction , Diabetes Mellitus/metabolism
5.
Nat Metab ; 5(4): 607-625, 2023 04.
Article En | MEDLINE | ID: mdl-37024752

The lifetime risk of kidney disease in people with diabetes is 10-30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPß, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs. We also uncover promoter XOR orthologue variants in humans associated with high risk of DKD. We introduced the risk variant into the 5'-regulatory region of XOR in DKD-resistant mice, which resulted in increased Xor activity associated with podocyte depletion, albuminuria, oxidative stress and damage restricted to the glomerular endothelium, which increase further with type 1 diabetes, high-fat diet and ageing. Therefore, differential regulation of Xor contributes to phenotypic consequences with diabetes and ageing.


Diabetes Mellitus , Diabetic Nephropathies , Humans , Male , Mice , Animals , Diabetic Nephropathies/genetics , Xanthine Dehydrogenase/genetics , Xanthine Dehydrogenase/metabolism , Genetic Predisposition to Disease , Mice, Inbred DBA , Mice, Inbred C57BL
6.
Redox Biol ; 58: 102520, 2022 12.
Article En | MEDLINE | ID: mdl-36334379

While it is generally accepted that oxidative stress impacts the diabetic kidney and contributes to pathogenesis, there is a substantial lack of knowledge about the molecular entity and anatomic location of a variety of reactive species. Here we provide a novel "oxidative stress map" of the diabetic kidney - the first of its kind, and identify specific, oxidized and other reactive lipids and their location. We used the db/db mouse model and Desorption Electrospray Ionization (DESI) mass spectrometry combined with heatmap image analysis. We analyzed a comprehensive array of phospholipid peroxide species in normal (db/m) and diabetic (db/db) kidneys using DESI imaging. Oxilipidomics heatmaps of the kidneys were generated focusing on phospholipids and their potential peroxidized products. We identified those lipids that undergo peroxidation in diabetic nephropathy. Several phospholipid peroxides and their spatial distribution were identified that were specific to the diabetic kidney, with significant enrichment in oxygenated phosphatidylethanolamines (PE) and lysophosphatidylethanolamine. Beyond qualitative and semi-quantitative information about the targets, the approach also reveals the anatomic location and the extent of lipid peroxide signal propagation across the kidney. Our approach provides novel, in-depth information of the location and molecular entity of reactive lipids in an organ with a very heterogeneous landscape. Many of these reactive lipids have been previously linked to programmed cell death mechanisms. Thus, the findings may be relevant to understand what impact phospholipid peroxidation has on cell and mitochondria membrane integrity and redox lipid signaling in diabetic nephropathy.


Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Phospholipids/metabolism , Diabetic Nephropathies/metabolism , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization/methods , Kidney/metabolism , Diabetes Mellitus/metabolism
7.
JCI Insight ; 7(7)2022 04 08.
Article En | MEDLINE | ID: mdl-35230975

The importance of healthy mitochondrial function is implicated in the prevention of chronic kidney disease (CKD) and diabetic kidney disease (DKD). Sex differences also play important roles in DKD. Our previous studies revealed that mitochondrial substrate overload (modeled by homozygous deletion of carnitine acetyl-transferase [CrAT]) in proximal tubules causes renal injury. Here, we demonstrate the importance of intact mitochondrial substrate efflux by titrating the amount of overload through the generation of a heterozygous CrAT-KO model (PT-CrATHET mouse). Intriguingly, these animals developed renal injury similarly to their homozygous counterparts. Mitochondria were structurally and functionally impaired in both sexes. Transcriptomic analyses, however, revealed striking sex differences. Male mice shut down fatty acid oxidation and several other metabolism-related pathways. Female mice had a significantly weaker transcriptional response in metabolism, but activation of inflammatory pathways was prominent. Proximal tubular cells from PT-CrATHET mice of both sexes exhibited a shift toward a more glycolytic phenotype, but female mice were still able to oxidize fatty acid-based substrates. Our results demonstrate that maintaining mitochondrial substrate metabolism balance is crucial to satisfying proximal tubular energy demand. Our findings have potentially broad implications, as both the glycolytic shift and the sexual dimorphisms discovered herein offer potentially new modalities for future interventions for treating kidney disease.


Diabetic Nephropathies , Mitochondria , Animals , Diabetic Nephropathies/metabolism , Fatty Acids/metabolism , Female , Homozygote , Male , Mice , Mitochondria/metabolism , Sequence Deletion
8.
ACS Chem Neurosci ; 13(2): 257-274, 2022 01 19.
Article En | MEDLINE | ID: mdl-34990116

Post-traumatic stress disorder (PTSD) is associated with cognitive deficits, oxidative stress, and inflammation. Animal models have recapitulated features of PTSD, but no comparative RNA sequencing analysis of differentially expressed genes (DEGs) in the brain between PTSD and animal models of traumatic stress has been carried out. We compared DEGs from the prefrontal cortex (PFC) of an established stress model to DEGs from the dorsolateral PFC (dlPFC) of humans. We observed a significant enrichment of rat DEGs in human PTSD and identified 20 overlapping DEGs, of which 17 (85%) are directionally concordant. N,N-dimethyltryptamine (DMT) is a known indirect antioxidant, anti-inflammatory, and neuroprotective compound with antidepressant and plasticity-facilitating effects. We tested the capacity of DMT, the monoamine oxidase inhibitor (MAOI) harmaline, and "pharmahuasca" (DMT + harmaline) to reduce reactive oxygen species (ROS) production and inflammatory gene expression and to modulate neuroplasticity-related gene expression in the model. We administered DMT (2 mg/kg IP), harmaline (1.5 mg/kg IP), pharmahuasca, or vehicle every other day for 5 days, following a 30 day stress regiment. We measured ROS production in the PFC and hippocampus (HC) by electron paramagnetic resonance spectroscopy and sequenced total mRNA in the PFC. We also performed in vitro assays to measure the affinity and efficacy of DMT and harmaline at 5HT2AR compared to 5-HT. DMT and pharmahuasca reduced ROS production in the PFC and HC, while harmaline had mixed effects. Treatments normalized 9, 12, and 14 overlapping DEGs, and pathway analysis implicated that genes were involved in ROS production, inflammation, growth factor signaling, neurotransmission, and neuroplasticity.


N,N-Dimethyltryptamine , Stress Disorders, Post-Traumatic , Animals , Dorsolateral Prefrontal Cortex , Humans , Rats , Reactive Oxygen Species , Stress Disorders, Post-Traumatic/drug therapy , Stress, Psychological/drug therapy
9.
Cancer Metab ; 9(1): 36, 2021 Oct 09.
Article En | MEDLINE | ID: mdl-34627389

BACKGROUND: Enhanced metabolic plasticity and diversification of energy production is a hallmark of highly proliferative breast cancers. This contributes to poor pharmacotherapy efficacy, recurrence, and metastases. We have previously identified a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 that selectively reduces bioenergetic coupling efficiency and is orally available. Here, we evaluated the antineoplastic properties of uncoupling oxidative phosphorylation from ATP production in breast cancer using BAM15. METHODS: The anticancer effects of BAM15 were evaluated in human triple-negative MDA-MB-231 and murine luminal B, ERα-negative EO771 cells as well as in an orthotopic allograft model of highly proliferative mammary cancer in mice fed a standard or high fat diet (HFD). Untargeted transcriptomic profiling of MDA-MB-231 cells was conducted after 16-h exposure to BAM15. Additionally, oxidative phosphorylation and electron transfer capacity was determined in permeabilized cells and excised tumor homogenates after treatment with BAM15. RESULTS: BAM15 increased proton leak and over time, diminished cell proliferation, migration, and ATP production in both MDA-MB-231 and EO771 cells. Additionally, BAM15 decreased mitochondrial membrane potential, while inducing apoptosis and reactive oxygen species accumulation in MDA-MB-231 and EO771 cells. Untargeted transcriptomic profiling of MDA-MB-231 cells further revealed inhibition of signatures associated with cell survival and energy production by BAM15. In lean mice, BAM15 lowered body weight independent of food intake and slowed tumor progression compared to vehicle-treated controls. In HFD mice, BAM15 reduced tumor growth relative to vehicle and calorie-restricted weight-matched controls mediated in part by impaired cell proliferation, mitochondrial respiratory function, and ATP production. LC-MS/MS profiling of plasma and tissues from BAM15-treated animals revealed distribution of BAM15 in adipose, liver, and tumor tissue with low abundance in skeletal muscle. CONCLUSIONS: Collectively, these data indicate that mitochondrial uncoupling may be an effective strategy to limit proliferation of aggressive forms of breast cancer. More broadly, these findings highlight the metabolic vulnerabilities of highly proliferative breast cancers which may be leveraged in overcoming poor responsiveness to existing therapies.

10.
J Biol Chem ; 297(4): 101196, 2021 10.
Article En | MEDLINE | ID: mdl-34529976

Mitochondria undergo continuous cycles of fission and fusion to promote inheritance, regulate quality control, and mitigate organelle stress. More recently, this process of mitochondrial dynamics has been demonstrated to be highly sensitive to nutrient supply, ultimately conferring bioenergetic plasticity to the organelle. However, whether regulators of mitochondrial dynamics play a causative role in nutrient regulation remains unclear. In this study, we generated a cellular loss-of-function model for dynamin-related protein 1 (DRP1), the primary regulator of outer membrane mitochondrial fission. Loss of DRP1 (shDRP1) resulted in extensive ultrastructural and functional remodeling of mitochondria, characterized by pleomorphic enlargement, increased electron density of the matrix, and defective NADH and succinate oxidation. Despite increased mitochondrial size and volume, shDRP1 cells exhibited reduced cellular glucose uptake and mitochondrial fatty acid oxidation. Untargeted transcriptomic profiling revealed severe downregulation of genes required for cellular and mitochondrial calcium homeostasis, which was coupled to loss of ATP-stimulated calcium flux and impaired substrate oxidation stimulated by exogenous calcium. The insights obtained herein suggest that DRP1 regulates substrate oxidation by altering whole-cell and mitochondrial calcium dynamics. These findings are relevant to the targetability of mitochondrial fission and have clinical relevance in the identification of treatments for fission-related pathologies such as hereditary neuropathies, inborn errors in metabolism, cancer, and chronic diseases.


Calcium Signaling , Dynamins/metabolism , Mitochondria, Muscle/metabolism , Mitochondrial Dynamics , Cell Line , Dynamins/genetics , Fatty Acids/genetics , Fatty Acids/metabolism , Humans , Mitochondria, Muscle/genetics , Oxidation-Reduction
11.
Am J Physiol Renal Physiol ; 321(3): F356-F368, 2021 09 01.
Article En | MEDLINE | ID: mdl-34151592

Low-protein (LP) diets extend lifespan through a comprehensive improvement in metabolic health across multiple tissues and organs. Many of these metabolic responses to protein restriction are secondary to transcriptional activation and release of FGF21 from the liver. However, the effects of an LP diet on the kidney in the context of aging has not been examined. Therefore, the goal of the current study was to investigate the impact of chronic consumption of an LP diet on the kidney in aging mice lacking FGF21. Wild-type (WT; C57BL/6J) and FGF21 knockout (KO) mice were fed a normal protein diet (20% casein) or an LP (5% casein) diet ad libitum from 3 to 22 mo of age. The LP diet led to a decrease in kidney weight and urinary albumin-to-creatinine ratio in both WT and FGF21 KO mice. Although the LP diet produced only mild fibrosis and infiltration of leukocytes in WT kidneys, the effects were significantly exacerbated by the absence of FGF21. Accordingly, transcriptomic analysis showed that inflammation-related pathways were significantly enriched and upregulated in response to LP diet in FGF21 KO mice but not WT mice. Collectively, these data demonstrate that the LP diet negatively affected the kidney during aging, but in the absence of FGF21, the LP diet-induced renal damage and inflammation were significantly worse, indicating a protective role of FGF21 in the kidney.NEW & NOTEWORTHY Long-term protein restriction is not advantageous for an otherwise healthy, aging kidney, as it facilitates the development of renal tubular injury and inflammatory cell infiltration. We provide evidence using FGF21 knockout animals that FGF21 is essential to counteract the renal injury and inflammation during aging on a low-protein diet.


Aging/drug effects , Energy Metabolism/drug effects , Fibroblast Growth Factors/pharmacology , Inflammation/drug therapy , Liver/drug effects , Animals , Diet, Protein-Restricted , Fibroblast Growth Factors/metabolism , Inflammation/metabolism , Kidney/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nephritis/metabolism
12.
Am J Physiol Renal Physiol ; 319(6): F1117-F1124, 2020 12 01.
Article En | MEDLINE | ID: mdl-33135479

Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.


Biomedical Research , Energy Metabolism , Gonadal Steroid Hormones/metabolism , Kidney Diseases/metabolism , Kidney/metabolism , Mitochondria/metabolism , Nephrology , Animals , Female , Humans , Kidney/physiopathology , Kidney Diseases/physiopathology , Male , Sex Characteristics , Sex Factors
13.
EMBO Mol Med ; 12(7): e12088, 2020 07 07.
Article En | MEDLINE | ID: mdl-32519812

Obesity is a leading cause of preventable death worldwide. Despite this, current strategies for the treatment of obesity remain ineffective at achieving long-term weight control. This is due, in part, to difficulties in identifying tolerable and efficacious small molecules or biologics capable of regulating systemic nutrient homeostasis. Here, we demonstrate that BAM15, a mitochondrially targeted small molecule protonophore, stimulates energy expenditure and glucose and lipid metabolism to protect against diet-induced obesity. Exposure to BAM15 in vitro enhanced mitochondrial respiratory kinetics, improved insulin action, and stimulated nutrient uptake by sustained activation of AMPK. C57BL/6J mice treated with BAM15 were resistant to weight gain. Furthermore, BAM15-treated mice exhibited improved body composition and glycemic control independent of weight loss, effects attributable to drug targeting of lipid-rich tissues. We provide the first phenotypic characterization and demonstration of pre-clinical efficacy for BAM15 as a pharmacological approach for the treatment of obesity and related diseases.


Glucose/metabolism , Glycemic Control , Mitochondria/drug effects , Mitochondria/metabolism , Obesity/metabolism , Obesity/prevention & control , Uncoupling Agents/pharmacology , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/drug effects , Glycemic Control/methods , Insulin Resistance , Male , Mice , Mice, Inbred C57BL
14.
Am J Physiol Renal Physiol ; 318(5): F1237-F1245, 2020 05 01.
Article En | MEDLINE | ID: mdl-32223308

Changes in mitochondrial function are central to many forms of kidney disease, including acute injury, diabetic nephropathy, hypertension, and chronic kidney diseases. As such, there is an increasing need for reliable and fast methods for assessing mitochondrial respiratory function in renal cells. Despite being indispensable for many mechanistic studies, cultured cells or isolated mitochondria, however, often do not recapitulate in vivo or close to in vivo situations. Cultured and/or immortalized cells often change their bioenergetic profile and phenotype compared with in vivo or ex vivo situations, and isolated mitochondria are simply removed from their cellular milieu. This is especially important for extremely complex organs such as the kidney. Here, we report the development and validation of a new approach for the rapid assessment of mitochondrial oxygen consumption on freshly isolated glomeruli or proximal tubular fragments using Agilent SeaHorse XFe24 and XF96 Extracellular Flux Analyzers. We validated the technique in several healthy and diseased rodent models: the C57BL/6J mouse, the diabetic db/db mouse and matching db/+ control mouse, and the Dahl salt-sensitive rat. We compared the data to respiration from isolated mitochondria. The method can be adapted and used for the rapid assessment of mitochondrial oxygen consumption from any rodent model of the investigator's choice. The isolation methods presented here ensure viable and functional proximal tubular fragments and glomeruli, with a preserved cellular environment for studying mitochondrial function within the context of their surroundings and interactions.


Diabetes Mellitus/metabolism , Energy Metabolism , Hypertension/metabolism , Kidney Glomerulus/metabolism , Kidney Tubules, Proximal/metabolism , Mitochondria/metabolism , Animals , Cell Respiration , Diabetes Mellitus/pathology , Disease Models, Animal , Female , Hypertension/pathology , Kidney Glomerulus/pathology , Kidney Tubules, Proximal/pathology , Male , Mice, Inbred C57BL , Mitochondria/pathology , Oxygen Consumption , Rats, Inbred Dahl
15.
Cardiovasc Toxicol ; 19(6): 500-509, 2019 12.
Article En | MEDLINE | ID: mdl-31020509

Human immunodeficiency virus (HIV)-infected patients undergoing antiretroviral therapy are afforded an increased lifespan but also exhibit an elevated incidence of cardiovascular disease. HIV therapy uses a combination drug approach, and nucleoside reverse transcriptase inhibitors (NRTI) are a backbone of this therapy. Endothelial dysfunction is an initiating event in cardiovascular disease etiology, and in our prior studies, NRTIs induced an endothelial dysfunction that was dependent upon mitochondrial oxidative stress. Moreover, short-term NRTI administration induced a mitophagy-associated endothelial toxicity and increased reactive oxygen species (ROS) production that was rescued by coenzyme Q10 (Q10) or overexpression of a mitochondrial antioxidant enzyme. Thus, our objective was to examine mitochondrial toxicity in endothelial cells after chronic NRTI treatment and evaluate Q10 as a potential adjunct therapy for preventing NRTI-induced mitochondrial toxicity. Human aortic endothelial cells (HAEC) were exposed to chronic NRTI treatment, with or without Q10. ROS production, cell proliferation rate, levels of senescence, and mitochondrial bioenergetic function were determined. Chronic NRTI increased ROS production but decreased population doubling. In addition, NRTI increased the accumulation of ß-galactosidase, indicative of an accelerated rate of senescence. Moreover, ATP-linked respiration was diminished. Co-treatment with Q10 delayed the onset of NRTI-induced senescence, decreased ROS production and rescued the cells' mitochondrial respiration rate. Thus, our findings may suggest antioxidant enrichment approaches for reducing the cardiovascular side effects of NRTI therapy.


Antioxidants/pharmacology , Cellular Senescence/drug effects , Endothelial Cells/drug effects , Mitochondria/drug effects , Reverse Transcriptase Inhibitors/toxicity , Ubiquinone/analogs & derivatives , Cell Proliferation , Cells, Cultured , Cytoprotection , Endothelial Cells/metabolism , Endothelial Cells/pathology , Energy Metabolism/drug effects , Humans , Mitochondria/metabolism , Mitochondria/pathology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction , Ubiquinone/pharmacology
16.
Diabetes ; 68(4): 819-831, 2019 04.
Article En | MEDLINE | ID: mdl-30728184

Proximal tubular epithelial cells are highly energy demanding. Their energy need is covered mostly from mitochondrial fatty acid oxidation. Whether derailments in fatty acid metabolism and mitochondrial dysfunction are forerunners of tubular damage has been suggested but is not entirely clear. Here we modeled mitochondrial overload by creating mice lacking the enzyme carnitine acetyltransferase (CrAT) in the proximal tubules, thus limiting a primary mechanism to export carbons under conditions of substrate excess. Mice developed tubular disease and, interestingly, secondary glomerulosclerosis. This was accompanied by increased levels of apoptosis regulator and fibrosis markers, increased oxidative stress, and abnormal profiles of acylcarnitines and organic acids suggesting profound impairments in all major forms of nutrient metabolism. When mice with CrAT deletion were fed a high-fat diet, kidney disease was more severe and developed faster. Primary proximal tubular cells isolated from the knockout mice displayed energy deficit and impaired respiration before the onset of pathology, suggesting mitochondrial respiratory abnormalities as a potential underlying mechanism. Our findings support the hypothesis that derailments of mitochondrial energy metabolism may be causative to chronic kidney disease. Our results also suggest that tubular injury may be a primary event followed by secondary glomerulosclerosis, raising the possibility that focusing on normalizing tubular cell mitochondrial function and energy balance could be an important preventative strategy.


Carnitine O-Acetyltransferase/metabolism , Kidney Diseases/metabolism , Kidney Tubules, Proximal/metabolism , Kidney/metabolism , Animals , Apoptosis/physiology , Carnitine O-Acetyltransferase/genetics , Diet, High-Fat , Electron Transport Complex I/metabolism , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Tubules, Proximal/pathology , Lipid Metabolism , Male , Mice , Mitochondria/metabolism , Oxidative Stress/physiology
17.
Front Physiol ; 10: 1588, 2019.
Article En | MEDLINE | ID: mdl-32116733

Salt-sensitive (SS) hypertension is accompanied with an early onset of proteinuria, which results from the loss of glomerular podocytes. Here, we hypothesized that glomerular damage in the SS hypertension occurs in part due to mitochondria dysfunction, and we used a unique model of freshly isolated glomeruli to test this hypothesis. In order to mimic SS hypertension, we used Dahl SS rats, an established animal model. Animals were fed a 0.4% NaCl (normal salt, NS) diet or challenged with a high salt (HS) 4% NaCl diet for 21 days to induce an increase in blood pressure (BP). Similar to previous studies, we found that HS diet caused renal hypertrophy, increased BP, glomerulosclerosis, and renal lesions such as fibrosis and protein casts. We did not observe changes in mitochondrial biogenesis in the renal cortex or isolated glomeruli fractions. However, Seahorse assay performed on freshly isolated glomeruli revealed that basal mitochondrial respiration, maximal respiration, and spare respiratory capacity were lower in the HS compared to the NS group. Using confocal imaging and staining for mitochondrial H2O2 using mitoPY1, we detected an intensified response to an acute H2O2 application in the podocytes of the glomeruli isolated from the HS diet fed group. TEM analysis showed that glomerular mitochondria from the HS diet fed group have structural abnormalities (swelling, enlargement, less defined cristae). Therefore, we report that glomerular mitochondria in SS hypertension are functionally and structurally defective, and this impairment could eventually lead to loss of podocytes and proteinuria. Thus, the glomerular-mitochondria axis can be targeted in novel treatment strategies for hypertensive glomerulosclerosis.

18.
J Lipid Res ; 59(12): 2321-2328, 2018 12.
Article En | MEDLINE | ID: mdl-30317185

NADPH oxidase (NOX) enzymes are one of the major superoxide-generating systems in cells. NOX-generated superoxide has been suggested to promote insulin resistance in the liver. However, the role of NOX enzymes in mediating metabolic dysfunction in other insulin target tissues remains unclear. Here, we show that NOX3 expression is induced in differentiated 3T3-L1 adipocytes upon treatment with proinflammatory cytokines. Superoxide production increased concurrently with NOX3 protein expression in cytokine-treated adipocytes, which was inhibited by the NOX inhibitor diphenyleneiodonium (DPI). Treatment of adipocytes with cytokines increased lipolysis and decreased PPARγ activity. Interestingly, treatment with DPI blunted lipolysis activation by cytokines but failed to restore PPARγ activity. siRNA-mediated NOX3 downregulation also prevented cytokine-induced superoxide generation and lipolysis. In line with increasing lipolysis, cytokines increased the phosphorylation of hormone-sensitive lipase (HSL), which was reversed by treatment with DPI and silencing of NOX3 expression. We conclude that NOX3 is a cytokine-inducible superoxide-generating enzyme in adipocytes, which promotes lipolysis through increasing phosphorylation of HSL. This suggests a key role for NOX3-mediated superoxide production in the increased adipocyte lipolysis in inflammatory settings.


Adipocytes/drug effects , Adipocytes/metabolism , Cytokines/pharmacology , Lipolysis/physiology , NADPH Oxidases/metabolism , Superoxides/metabolism , 3T3-L1 Cells , Animals , Inflammation/metabolism , Insulin Resistance , Lipolysis/drug effects , Lipolysis/genetics , Mice , NADPH Oxidases/genetics , Onium Compounds/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
19.
Mol Metab ; 14: 95-107, 2018 08.
Article En | MEDLINE | ID: mdl-29914854

OBJECTIVE: Pancreatic tissue, and islets in particular, are enriched in expression of the interleukin-1 receptor type I (IL-1R). Because of this enrichment, islet ß-cells are exquisitely sensitive to the IL-1R ligands IL-1α and IL-1ß, suggesting that signaling through this pathway regulates health and function of islet ß-cells. METHODS: Herein, we report a targeted deletion of IL-1R in pancreatic tissue (IL-1RPdx1-/-) in C57BL/6J mice and in db/db mice on the C57 genetic background. Islet morphology, ß-cell transcription factor abundance, and expression of the de-differentiation marker Aldh1a3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance tests were used to examine metabolic status of these genetic manipulations. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. RESULTS: Pancreatic deletion of IL-1R leads to impaired glucose tolerance, a phenotype that is exacerbated by age. Crossing the IL-1RPdx1-/- with db/db mice worsened glucose tolerance without altering body weight. There were no detectable alterations in insulin tolerance between IL-1RPdx1-/- mice and littermate controls. However, glucose-stimulated insulin secretion was reduced in islets isolated from IL-1RPdx1-/- relative to control islets. Insulin output in vivo after a glucose challenge was also markedly reduced in IL-1RPdx1-/- mice when compared with littermate controls. Pancreatic islets from IL-1RPdx1-/- mice displayed elevations in Aldh1a3, a marker of de-differentiation, and reduction in nuclear abundance of the ß-cell transcription factor MafA. Nkx6.1 abundance was unaltered. CONCLUSIONS: There is an important physiological role for pancreatic IL-1R to promote glucose homeostasis by suppressing expression of Aldh1a3, sustaining MafA abundance, and supporting glucose-stimulated insulin secretion in vivo.


Cell Differentiation , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Receptors, Interleukin-1 Type I/genetics , Animals , Cell Line, Tumor , Cells, Cultured , Female , Gene Deletion , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeostasis , Insulin Resistance , Insulin-Secreting Cells/cytology , Maf Transcription Factors, Large/genetics , Maf Transcription Factors, Large/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism
20.
Redox Biol ; 16: 248-254, 2018 06.
Article En | MEDLINE | ID: mdl-29547847

Early podocyte loss is characteristic of chronic kidney diseases (CKD) in obesity and diabetes. Since treatments for hyperglycemia and hypertension do not prevent podocyte loss, there must be additional factors causing podocyte depletion. The role of oxidative stress has been implicated in CKD but it is not known how exactly free radicals affect podocyte physiology. To assess this relationship, we investigated the effects of lipid radicals on podocytes, as lipid peroxidation is a major form of oxidative stress in diabetes. We found that lipid radicals govern changes in podocyte homeostasis through redox sensitive RhoA signaling: lipid radicals inhibit migration and cause loss of F-actin fibers. These effects were prevented by mutating the redox sensitive cysteines of RhoA. We therefore suggest that in diseases associated with increased lipid peroxidation, lipid radicals can determine podocyte function with potentially pathogenic consequences for kidney physiology.


Lipid Peroxidation/genetics , Podocytes/metabolism , Renal Insufficiency, Chronic/genetics , rhoA GTP-Binding Protein/genetics , Actins/genetics , Actins/metabolism , Cell Movement/genetics , Cytoskeleton/genetics , Cytoskeleton/metabolism , Diabetes Complications/genetics , Diabetes Complications/pathology , Free Radicals/metabolism , Humans , Mutation , Obesity/complications , Obesity/genetics , Obesity/pathology , Oxidation-Reduction , Podocytes/pathology , Renal Insufficiency, Chronic/pathology , Signal Transduction
...