Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Neurobiol Dis ; 186: 106277, 2023 10 01.
Article En | MEDLINE | ID: mdl-37652184

Cerebral cavernous malformation type-3 (CCM3) is a type of brain vascular malformation caused by mutations in programmed cell death protein-10 (PDCD10). It is characterized by early life occurrence of hemorrhagic stroke and profound blood-brain barrier defects. The pathogenic mechanisms responsible for microvascular hyperpermeability and lesion progression in CCM3 are still largely unknown. The current study examined brain endothelial barrier structural defects formed in the absence of CCM3 in vivo and in vitro that may lead to CCM3 lesion leakage. We found significant upregulation of a 20 kDa isoform of connexin 43 (GJA1-20 k) in brain endothelial cells (BEC) in both non-leaky and leaky lesions, as well as in an in vitro CCM3 knockdown model (CCM3KD-BEC). Morphological, biochemical, FRET, and FRAP analyses of CCM3KD-BEC found GJA1-20 k regulates full-length GJA1 biogenesis, prompting uncontrolled gap junction growth. Furthermore, by binding to a tight junction scaffolding protein, ZO-1, GJA1-20 k interferes with Cx43/ZO-1 interactions and gap junction/tight junction crosstalk, promoting ZO-1 dissociation from tight junction complexes and diminishing claudin-5/ZO-1 interaction. As a consequence, the tight junction complex is destabilized, allowing "replacement" of tight junctions with gap junctions leading to increased brain endothelial barrier permeability. Modifying cellular levels of GJA1-20 k rescued brain endothelial barrier integrity re-establishing the spatial organization of gap and tight junctional complexes. This study highlights generation of potential defects at the CCM3-affected brain endothelial barrier which may underlie prolonged vascular leakiness.


Hemangioma, Cavernous, Central Nervous System , Humans , Blood-Brain Barrier , Brain , Connexin 43 , Endothelial Cells
2.
Fluids Barriers CNS ; 20(1): 14, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36855111

Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11,287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox9, Snai1), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.


DNA Methylation , Stroke , Animals , Mice , Epigenesis, Genetic , Blood-Brain Barrier , Stroke/genetics , Membrane Transport Proteins , Aging
3.
Stroke ; 54(3): 661-672, 2023 03.
Article En | MEDLINE | ID: mdl-36848419

Cerebral endothelial cells and their linking tight junctions form a unique, dynamic and multi-functional interface, the blood-brain barrier (BBB). The endothelium is regulated by perivascular cells and components forming the neurovascular unit. This review examines BBB and neurovascular unit changes in normal aging and in neurodegenerative disorders, particularly focusing on Alzheimer disease, cerebral amyloid angiopathy and vascular dementia. Increasing evidence indicates BBB dysfunction contributes to neurodegeneration. Mechanisms underlying BBB dysfunction are outlined (endothelium and neurovascular unit mediated) as is the BBB as a therapeutic target including increasing the uptake of systemically delivered therapeutics across the BBB, enhancing clearance of potential neurotoxic compounds via the BBB, and preventing BBB dysfunction. Finally, a need for novel biomarkers of BBB dysfunction is addressed.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Blood-Brain Barrier , Endothelial Cells , Aging
4.
Front Cell Neurosci ; 16: 931247, 2022.
Article En | MEDLINE | ID: mdl-35813502

Cerebral amyloid angiopathy (CAA) is a small vessel disease characterized by amyloid ß (Aß) peptide deposition within the walls of medium to small-caliber blood vessels, cerebral microhemorrhage, and blood-brain barrier (BBB) leakage. It is commonly associated with late-stage Alzheimer's disease. BBB dysfunction is indicated as a pathological substrate for CAA progression with hyperpermeability, enhancing the extravasation of plasma components and inducing neuroinflammation, further worsening BBB injury and contributing to cognitive decline. Although significant effort has been made in defining the gene mutations and risk factors involved in microvascular alterations with vascular dementia and Alzheimer's disease, the intra- and intercellular pathogenic mechanisms responsible for vascular hyperpermeability are still largely unknown. The present study aimed to elucidate the transcriptional profile of the cerebral microvessels (BBB) in a murine model with CAA vasculopathy to define potential causes and underlying mechanisms of BBB injury. A comprehensive RNA sequencing analysis was performed of CAA vasculopathy in Tg-SwDI mice at 6 and 18 months in comparison to age-matched wildtype controls to examine how age and amyloid accumulation impact the transcriptional signature of the BBB. Results indicate that Aß has a critical role in triggering brain endothelial cell and BBB dysfunction in CAA vasculopathy, causing an intense proinflammatory response, impairing oxidative metabolism, altering the coagulation status of brain endothelial cells, and remodeling barrier properties. The proinflammatory response includes both adaptive and innate immunity, with pronounced induction of genes that regulate macrophage/microglial activation and chemokines/adhesion molecules that support T and B cell transmigration. Age has an important impact on the effects of Aß, increasing the BBB injury in CAA vasculopathy. However, early inflammation, particularly microglia/macrophage activation and the mediators of B lymphocytes' activities are underlying processes of BBB hyperpermeability and cerebral microbleeds in the early stage of CAA vasculopathy. These findings reveal a specific profile of the CAA-associated BBB injury that leads to a full progression of CAA.

5.
Methods Mol Biol ; 2492: 289-305, 2022.
Article En | MEDLINE | ID: mdl-35733052

Cerebral ischemic injury evokes a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface. These evolve over time and space and result in progressive neurological damage. Emerging evidence suggests that blood-brain barrier (BBB) recovery and reestablishment of BBB impermeability are incomplete and that these could influence stroke injury recovery, increase the risk of new stroke occurrence, and be a solid substrate for developing vascular dementia. Recent work from the author's laboratory has established the existence of incomplete BBB recovery in chronic stroke conditions that was induced by structural alterations to brain endothelial junctional complexes and persistent BBB leakage. The experimental methodology presented here is focused on modelling chronic stroke injury using an in vivo thromboembolic mouse stroke model and how to evaluate the kinetics and magnitude of BBB hyperpermeability in chronic stroke conditions using a combination of magnetic resonance imaging, tracer studies, and immunohistochemistry.


Brain Ischemia , Stroke , Animals , Biological Transport , Blood-Brain Barrier/pathology , Brain/pathology , Brain Ischemia/pathology , Disease Models, Animal , Mice , Stroke/pathology
6.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article En | MEDLINE | ID: mdl-35563390

Cerebral cavernous malformation (CCM) is a cerebromicrovascular disease that affects up to 0.5% of the population. Vessel dilation, decreased endothelial cell-cell contact, and loss of junctional complexes lead to loss of brain endothelial barrier integrity and hemorrhagic lesion formation. Leakage of hemorrhagic lesions results in patient symptoms and complications, including seizures, epilepsy, focal headaches, and hemorrhagic stroke. CCMs are classified as sporadic (sCCM) or familial (fCCM), associated with loss-of-function mutations in KRIT1/CCM1, CCM2, and PDCD10/CCM3. Identifying the CCM proteins has thrust the field forward by (1) revealing cellular processes and signaling pathways underlying fCCM pathogenesis, and (2) facilitating the development of animal models to study CCM protein function. CCM animal models range from various murine models to zebrafish models, with each model providing unique insights into CCM lesion development and progression. Additionally, these animal models serve as preclinical models to study therapeutic options for CCM treatment. This review briefly summarizes CCM disease pathology and the molecular functions of the CCM proteins, followed by an in-depth discussion of animal models used to study CCM pathogenesis and developing therapeutics.


Hemangioma, Cavernous, Central Nervous System , Animals , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Mice , Microtubule-Associated Proteins/metabolism , Models, Animal , Mutation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
7.
ACS Nano ; 16(6): 8729-8750, 2022 06 28.
Article En | MEDLINE | ID: mdl-35616289

Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4+ monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∼60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.


Glioblastoma , Glioma , Immunotherapy , Nanoparticles , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Chemokine CXCL12/antagonists & inhibitors , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioma/drug therapy , Receptors, CXCR4/antagonists & inhibitors , Signal Transduction , Tumor Microenvironment
8.
Fluids Barriers CNS ; 17(1): 44, 2020 Jul 16.
Article En | MEDLINE | ID: mdl-32677965

The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.


Astrocytes/physiology , Blood-Brain Barrier , Cerebrovascular Disorders , Endothelial Cells/physiology , In Vitro Techniques , Models, Neurological , Neurons/physiology , Tight Junctions/physiology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Cerebrovascular Disorders/immunology , Cerebrovascular Disorders/pathology , Cerebrovascular Disorders/physiopathology , Humans
9.
Exp Neurol ; 330: 113336, 2020 08.
Article En | MEDLINE | ID: mdl-32360283

Neutrophils are considered key participants in post-ischemic stroke inflammation. They are the first white blood cells to arrive in ischemic brain and their presence in the brain tissue positively correlates with post-ischemic injury severity. CXCL1 is a neutrophil attractant chemokine and the present study evaluates whether redirecting neutrophil migration using a peripherally implanted CXCL1-soaked sponge can reduce brain inflammation and improve outcomes in a novel mouse model of thromboembolic (TE) stroke. TE stroke was induced by injection of a platelet-rich microemboli suspension into the internal carotid artery of adult C57BL/6 male mice. The model induced neuroinflammation that was associated with increases in multiple brain and serum cytokines/chemokines at the mRNA and protein levels, including very marked increases in CXCL1. In other groups of animals, an absorbable sterile hemostatic sponge, previously immersed in either saline (0.9%NaCl) or CXCL1, was implanted into subcutaneous pockets formed in the inguinal region on the left and right side following stroke surgery. Mice implanted with the sponge soaked with CXCL1 had significantly reduced neuroinflammation and infarct size after TE stroke compared to mice implanted with the sponge soaked with 0.9%NaCl. There was also reduced mortality and improved neurological deficits in the TE stroke + CXCL1 sponge group compared to the TE stroke +0.9%NaCl sponge group. In conclusion: redirecting bloodstream leukocytes toward a peripherally-implanted neutrophil chemokine CXCL1-soaked sponge improves outcomes in a novel mouse model of thromboembolic stroke. The present findings suggest a novel therapeutic strategy for patients with acute stroke.


Chemokine CXCL1/pharmacology , Neutrophil Infiltration/drug effects , Neutrophils/metabolism , Stroke , Thromboembolism , Animals , Male , Mice , Mice, Inbred C57BL , Surgical Sponges
10.
Arterioscler Thromb Vasc Biol ; 39(11): 2240-2247, 2019 11.
Article En | MEDLINE | ID: mdl-31510792

Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself. Those include endothelial tight junctions, transcytosis, endothelial cell death, and adhesion molecule expression. It also examines how such studies are being translated to the clinic, especially as adjunct therapies for preventing intracerebral hemorrhage during reperfusion of the ischemic brain. Identification of endothelial targets may prove valuable in a search for combination therapies that would specifically protect different cell types in ischemia.


Brain Ischemia/physiopathology , Disease Models, Animal , Endothelial Cells/physiology , Endothelium, Vascular/physiopathology , Translational Research, Biomedical , Animals , Brain Ischemia/therapy , Endothelium, Vascular/physiology , Humans , Inflammation/physiopathology , Ion Transport , Reperfusion , Tight Junctions/physiology , Transcytosis
11.
Front Neurosci ; 13: 864, 2019.
Article En | MEDLINE | ID: mdl-31543756

Cessation of blood flow leads to a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface which evolves over time and space, and results in damage to neural cells and edema formation. Cerebral ischemic injury evokes a profound and deleterious upregulation in inflammation and triggers multiple cell death pathways, but it also induces a series of the events associated with regenerative responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging evidence suggests that epigenetic reprograming could play a pivotal role in ongoing post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes current knowledge about post-stroke recovery processes at the NVU, as well as epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses novel drug targets and therapeutic strategies for enhancing post-stroke recovery.

12.
Neurobiol Dis ; 126: 105-116, 2019 06.
Article En | MEDLINE | ID: mdl-30196051

Accumulating evidence suggest that cerebral microvascular disease increases with advancing age and is associated with lacunar stroke, leukoaraiosis, vascular dementia and Alzheimer disease. Increased blood brain barrier (BBB) permeability/leakage takes "center stage" in ongoing age-related vascular/brain parenchymal injury. Although significant effort has been made in defining the gene mutations and risk factors involved in microvascular alterations in vascular dementia and Alzheimer disease, the intra- and intercellular pathogenic mechanisms responsible for vascular hyperpermeability are still largely unknown. The present study aimed to reveal the ongoing senescence process in brain endothelial cells and its effect on BBB integrity in healthy/non-disease conditions. An analysis of BBB integrity during the life span of C56Bl6 mice (young, 2-6 months; middle-aged, 6-12, months; old, 16-22 months) showed increased BBB permeability for different molecular sized tracers (sodium fluorescein, inulin and 20 kDa dextran) in aged mice which was accompanied by modifications in tight junction (TJ) complex organization, manifested as altered TJ protein expression (particularly claudin-5). A gene screening analysis of aging associated markers in brain microvessels isolated from "aged" mice (C56Bl6, 18-20 months) and human brain samples showed a significant decline in sirtuin-1 expression (Sirt1; ~2.8-fold) confirmed at mRNA and protein levels and by activation assay. Experiments in Sirt1 transgenic mice and brain endothelial cell-specific Sirt1 knockout mice indicated that Sirt1 affects BBB integrity, with loss increasing permeability. Similarly, in vitro, overexpressing Sirt1 or increasing Sirt1 activity with an agonist (Sirt1720) protected against senescence-induced brain endothelial barrier hyperpermeability, stabilized claudin-5/ZO-1 interactions and rescued claudin-5 expression. These findings reveal a novel role of Sirt1 in modulating aging-associated BBB persistent leakage.


Aging/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Capillary Permeability/physiology , Sirtuin 1/metabolism , Aging/pathology , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Mice
13.
J Neurosci ; 39(4): 743-757, 2019 01 23.
Article En | MEDLINE | ID: mdl-30504279

Recent evidence suggests that blood-brain barrier (BBB) recovery and reestablishment of BBB impermeability after stroke is incomplete. This could influence stroke recovery, increase the risk of repeat stroke, and be a solid substrate for developing vascular dementia. Although accumulating evidence has defined morphological alterations and underlying mechanisms of tight junction (TJ) changes during BBB breakdown in acute stroke, very little is known about the type of alterations and mechanisms in BBB "leakage" found subacutely or chronically. The current study examined BBB structural alterations during the "BBB leakage" associated with the chronic phase of stroke in male mice and both genders of humans. We found significant upregulation of claudin-1 mRNA and protein, a nonspecific claudin for blood vessels, and downregulation in claudin-5 expression. Morphological and biochemical as well as fluorescence resonance energy transfer and fluorescence recovery after photobleaching analysis of postischemic brain endothelial cells and cells overexpressing claudin-1 indicated that newly synthesized claudin-1 was present on the cell membrane (∼45%), was incorporated into the TJ complex with established interaction with zonula occludens-1 (ZO-1), and was building homophilic cis- and trans-interactions. The appearance of claudin-1 in the TJ complex reduced claudin-5 strands (homophilic claudin-5 cis- and trans-interactions) and claudin-5/ZO-1 interaction affecting claudin-5 incorporation into the TJ complex. Moreover, claudin-1 induction was associated with an endothelial proinflammatory phenotype. Targeting claudin-1 with a specific C1C2 peptide improved brain endothelial barrier permeability and functional recovery in chronic stroke condition. This study highlights a potential "defect" in postischemic barrier formation that may underlie prolonged vessel leakiness.SIGNIFICANCE STATEMENT Although rarely expressed at the normal blood-brain barrier (BBB), claudin-1 is expressed in pathological conditions. Analyzing poststroke human and mouse blood microvessels we have identified that claudin-1 is highly expressed in leaky brain microvessels. Our results reveal that claudin-1 is incorporated in BBB tight junction complex, impeding BBB recovery and causing BBB leakiness during poststroke recovery. Targeting claudin-1 with a claudin-1 peptide improves brain endothelial barrier permeability and consequently functional neurological recovery after stroke.


Blood-Brain Barrier/pathology , Claudin-1/genetics , Stroke/genetics , Stroke/pathology , Animals , Brain Ischemia/pathology , Claudin-5/biosynthesis , Claudin-5/genetics , Down-Regulation/genetics , Endothelial Cells/pathology , Female , Humans , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Inflammation/pathology , Male , Mice , Tight Junctions/pathology , Zonula Occludens-1 Protein/biosynthesis , Zonula Occludens-1 Protein/genetics
14.
Sci Rep ; 8(1): 10042, 2018 07 03.
Article En | MEDLINE | ID: mdl-29968755

Regulation of cerebral endothelial cell function plays an essential role in changes in blood-brain barrier permeability. Proteins that are important for establishment of endothelial tight junctions have emerged as critical molecules, and PDZ domain containing-molecules are among the most important. We have discovered that the PDZ-domain containing protein periaxin (PRX) is expressed in human cerebral endothelial cells. Surprisingly, PRX protein is not detected in brain endothelium in other mammalian species, suggesting that it could confer human-specific vascular properties. In endothelial cells, PRX is predominantly localized to the nucleus and not tight junctions. Transcriptome analysis shows that PRX expression suppresses, by at least 50%, a panel of inflammatory markers, of which 70% are Type I interferon response genes; only four genes were significantly activated by PRX expression. When expressed in mouse endothelial cells, PRX strengthens barrier function, significantly increases transendothelial electrical resistance (~35%; p < 0.05), and reduces the permeability of a wide range of molecules. The PDZ domain of PRX is necessary and sufficient for its barrier enhancing properties, since a splice variant (S-PRX) that contains only the PDZ domain, also increases barrier function. PRX also attenuates the permeability enhancing effects of lipopolysaccharide. Collectively, these studies suggest that PRX could potentially regulate endothelial homeostasis in human cerebral endothelial cells by modulating inflammatory gene programs.


Cerebrovascular Circulation/physiology , Endothelial Cells/metabolism , Membrane Proteins/biosynthesis , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Cell Line , Cell Membrane Permeability , Cell Nucleus , Cerebrovascular Circulation/genetics , Endothelium, Vascular/metabolism , Gene Expression , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , PDZ Domains , Tight Junctions/metabolism
15.
J Cereb Blood Flow Metab ; 38(8): 1255-1275, 2018 08.
Article En | MEDLINE | ID: mdl-29737222

Vascular disruption is the underlying cause of cerebral hemorrhage, including intracerebral, subarachnoid and intraventricular hemorrhage. The disease etiology also involves cerebral hemorrhage-induced blood-brain barrier (BBB) disruption, which contributes an important component to brain injury after the initial cerebral hemorrhage. BBB loss drives vasogenic edema, allows leukocyte extravasation and may lead to the entry of potentially neurotoxic and vasoactive compounds into brain. This review summarizes current information on changes in brain endothelial junction proteins in response to cerebral hemorrhage (and clot-related factors), the mechanisms underlying junction modification and potential therapeutic targets to limit BBB disruption and, potentially, hemorrhage occurrence. It also addresses advances in the tools that are now available for assessing changes in junctions after cerebral hemorrhage and the potential importance of such junction changes. Recent studies suggest post-translational modification, conformational change and intracellular trafficking of junctional proteins may alter barrier properties. Understanding how cerebral hemorrhage alters BBB properties beyond changes in tight junction protein loss may provide important therapeutic insights to prevent BBB dysfunction and restore normal function.


Blood-Brain Barrier/pathology , Cerebral Hemorrhage/pathology , Intercellular Junctions/pathology , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Claudin-5/analysis , Claudin-5/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Intercellular Junctions/drug effects , Intercellular Junctions/metabolism , Occludin/analysis , Occludin/metabolism , Zonula Occludens-1 Protein/analysis , Zonula Occludens-1 Protein/metabolism
16.
FASEB J ; 32(5): 2615-2629, 2018 05.
Article En | MEDLINE | ID: mdl-29295866

Familial cerebral cavernous malformations type III (fCCM3) is a disease of the cerebrovascular system caused by loss-of-function mutations in ccm3 that result in dilated capillary beds that are susceptible to hemorrhage. Before hemorrhage, fCCM3 lesions are characterized by a hyperpermeable blood-brain barrier (BBB), the key pathologic feature of fCCM3. We demonstrate that connexin 43 (Cx43), a gap junction (GJ) protein that is incorporated into the BBB junction complex, is up-regulated in lesions of a murine model of fCCM3. Small interfering RNA-mediated ccm3 knockdown (CCM3KD) in brain endothelial cells in vitro increased Cx43 protein expression, GJ plaque size, GJ intracellular communication (GJIC), and barrier permeability. CCM3KD hyperpermeability was rescued by GAP27, a peptide gap junction and hemichannel inhibitor of Cx43 GJIC. Tight junction (TJ) protein, zonula occludens 1 (ZO-1), accumulated at Cx43 GJs in CCM3KD cells and displayed fragmented staining at TJs. The GAP27-mediated inhibition of Cx43 GJs in CCM3KD cells restored ZO-1 to TJ structures and reduced plaque accumulation at Cx43 GJs. The TJ protein, Claudin-5, was also fragmented at TJs in CCM3KD cells, and GAP27 treatment lengthened TJ-associated fragments and increased Claudin 5-Claudin 5 transinteraction. Overall, we demonstrate that Cx43 GJs are aberrantly increased in fCCM3 and regulate barrier permeability by a TJ-dependent mechanism.-Johnson, A. M., Roach, J. P., Hu, A., Stamatovic, S. M., Zochowski, M. R., Keep, R. F., Andjelkovic, A. V. Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure.


Blood-Brain Barrier/metabolism , Connexin 43/metabolism , Endothelium, Vascular/metabolism , Gap Junctions/metabolism , Hemangioma, Cavernous, Central Nervous System/metabolism , Tight Junctions/metabolism , Animals , Blood-Brain Barrier/pathology , Cell Line , Claudin-5/genetics , Claudin-5/metabolism , Connexin 43/genetics , Disease Models, Animal , Endothelium, Vascular/pathology , Gap Junctions/genetics , Gap Junctions/pathology , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , Mice , Mice, Knockout , Permeability , Tight Junctions/genetics , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
17.
Ann N Y Acad Sci ; 1397(1): 54-65, 2017 06.
Article En | MEDLINE | ID: mdl-28415156

Internalization of tight junction (TJ) proteins from the plasma membrane is a pivotal mechanism regulating TJ plasticity and function in both epithelial and endothelial barrier tissues. Once internalized, the TJ proteins enter complex vesicular machinery, where further trafficking is directly dependent on the initiating stimulus and downstream signaling pathways that regulate the sorting and destiny of TJ proteins, as well as on cell and barrier responses. The destiny of internalized TJ proteins is recycling to the plasma membrane or sorting to late endosomes and degradation. This review highlights recent advances in our knowledge of endocytosis and vesicular trafficking of TJ proteins in both epithelial and endothelial cells. A greater understanding of these processes may allow for the development of methods to modulate barrier permeability for drug delivery or prevent barrier dysfunction in disease states.


Endocytosis , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism , Animals , Claudin-1/metabolism , Endosomes/metabolism , Humans , Models, Biological
18.
Tissue Barriers ; 4(1): e1154641, 2016.
Article En | MEDLINE | ID: mdl-27141427

The blood-brain barrier (BBB) is a highly complex and dynamic barrier. It is formed by an interdependent network of brain capillary endothelial cells, endowed with barrier properties, and perivascular cells (astrocytes and pericytes) responsible for inducing and maintaining those properties. One of the primary properties of the BBB is a strict regulation of paracellular permeability due to the presence of junctional complexes (tight, adherens and gap junctions) between the endothelial cells. Alterations in junction assembly and function significantly affect BBB properties, particularly barrier permeability. However, such alterations are also involved in remodeling the brain endothelial cell surface and regulating brain endothelial cell phenotype. This review summarizes the characteristics of brain endothelial tight, adherens and gap junctions and highlights structural and functional alterations in junctional proteins that may contribute to BBB dysfunction.


Blood-Brain Barrier/metabolism , Tight Junction Proteins/metabolism , Animals , Capillary Permeability , Humans , Mutation , Protein Processing, Post-Translational , Tight Junction Proteins/chemistry , Tight Junction Proteins/genetics
19.
Acta Neuropathol ; 130(5): 731-50, 2015 Nov.
Article En | MEDLINE | ID: mdl-26385474

Impairment of brain endothelial barrier integrity is critical for cerebral cavernous malformation (CCM) lesion development. The current study investigates changes in tight junction (TJ) complex organization when PDCD10 (CCM3) is mutated/depleted in human brain endothelial cells. Analysis of lesions with CCM3 mutation and brain endothelial cells transfected with CCM3 siRNA (CCM3-knockdown) showed little or no increase in TJ transmembrane and scaffolding proteins mRNA expression, but proteins levels were generally decreased. CCM3-knockdown cells had a redistribution of claudin-5 and occludin from the membrane to the cytosol with no alterations in protein turnover but with diminished protein-protein interactions with ZO-1 and ZO-1 interaction with the actin cytoskeleton. The most profound effect of CCM3 mutation/depletion was on an actin-binding protein, cortactin. CCM3 depletion caused cortactin Ser-phosphorylation, dissociation from ZO-1 and actin, redistribution to the cytosol and degradation. This affected cortical actin ring organization, TJ complex stability and consequently barrier integrity, with constant hyperpermeability to inulin. A potential link between CCM3 depletion and altered cortactin was tonic activation of MAP kinase ERK1/2. ERK1/2 inhibition increased cortactin expression and incorporation into the TJ complex and improved barrier integrity. This study highlights the potential role of CCM3 in regulating TJ complex organization and brain endothelial barrier permeability.


Apoptosis Regulatory Proteins/metabolism , Blood-Brain Barrier/metabolism , Capillary Permeability/physiology , Cortactin/metabolism , Intellectual Disability/metabolism , MAP Kinase Signaling System/physiology , Membrane Proteins/metabolism , Micrognathism/metabolism , Proto-Oncogene Proteins/metabolism , Ribs/abnormalities , Actins/metabolism , Apoptosis Regulatory Proteins/genetics , Blood-Brain Barrier/pathology , Cells, Cultured , Cytosol/metabolism , Cytosol/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Intellectual Disability/pathology , Membrane Proteins/genetics , Micrognathism/pathology , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins/genetics , RNA, Messenger/metabolism , Ribs/metabolism , Ribs/pathology , Tight Junctions/metabolism , Tight Junctions/pathology , Zonula Occludens-1 Protein/metabolism
20.
Biomaterials ; 54: 9-20, 2015 Jun.
Article En | MEDLINE | ID: mdl-25907035

In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 µM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.


Cell Membrane Permeability/physiology , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Peptidomimetics/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism , Caco-2 Cells , HEK293 Cells , Humans
...