Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38673995

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Cysteine Proteinase Inhibitors , Nitriles , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use , Cysteine Proteinase Inhibitors/chemistry , Malaria/drug therapy , Nitriles/therapeutic use , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38673962

In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level.


Antiviral Agents , Dengue , Protease Inhibitors , Zika Virus Infection , Animals , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , DEAD-box RNA Helicases , Dengue/drug therapy , Dengue/virology , Dengue Virus/drug effects , Nucleoside-Triphosphatase , Protease Inhibitors/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Proteases , Zika Virus/drug effects , Zika Virus/enzymology , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
...