Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Respir Res ; 25(1): 177, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658980

BACKGROUND: Computer Aided Lung Sound Analysis (CALSA) aims to overcome limitations associated with standard lung auscultation by removing the subjective component and allowing quantification of sound characteristics. In this proof-of-concept study, a novel automated approach was evaluated in real patient data by comparing lung sound characteristics to structural and functional imaging biomarkers. METHODS: Patients with cystic fibrosis (CF) aged > 5y were recruited in a prospective cross-sectional study. CT scans were analyzed by the CF-CT scoring method and Functional Respiratory Imaging (FRI). A digital stethoscope was used to record lung sounds at six chest locations. Following sound characteristics were determined: expiration-to-inspiration (E/I) signal power ratios within different frequency ranges, number of crackles per respiratory phase and wheeze parameters. Linear mixed-effects models were computed to relate CALSA parameters to imaging biomarkers on a lobar level. RESULTS: 222 recordings from 25 CF patients were included. Significant associations were found between E/I ratios and structural abnormalities, of which the ratio between 200 and 400 Hz appeared to be most clinically relevant due to its relation with bronchiectasis, mucus plugging, bronchial wall thickening and air trapping on CT. The number of crackles was also associated with multiple structural abnormalities as well as regional airway resistance determined by FRI. Wheeze parameters were not considered in the statistical analysis, since wheezing was detected in only one recording. CONCLUSIONS: The present study is the first to investigate associations between auscultatory findings and imaging biomarkers, which are considered the gold standard to evaluate the respiratory system. Despite the exploratory nature of this study, the results showed various meaningful associations that highlight the potential value of automated CALSA as a novel non-invasive outcome measure in future research and clinical practice.


Biomarkers , Cystic Fibrosis , Respiratory Sounds , Humans , Cross-Sectional Studies , Male , Female , Prospective Studies , Adult , Cystic Fibrosis/physiopathology , Cystic Fibrosis/diagnostic imaging , Young Adult , Adolescent , Auscultation/methods , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung/physiopathology , Child , Proof of Concept Study , Diagnosis, Computer-Assisted/methods , Middle Aged
2.
IEEE J Biomed Health Inform ; 26(4): 1847-1860, 2022 04.
Article En | MEDLINE | ID: mdl-34705660

Digital auscultation is a well-known method for assessing lung sounds, but remains a subjective process in typical practice, relying on the human interpretation. Several methods have been presented for detecting or analyzing crackles but are limited in their real-world application because few have been integrated into comprehensive systems or validated on non-ideal data. This work details a complete signal analysis methodology for analyzing crackles in challenging recordings. The procedure comprises five sequential processing blocks: (1) motion artifact detection, (2) deep learning denoising network, (3) respiratory cycle segmentation, (4) separation of discontinuous adventitious sounds from vesicular sounds, and (5) crackle peak detection. This system uses a collection of new methods and robustness-focused improvements on previous methods to analyze respiratory cycles and crackles therein. To validate the accuracy, the system is tested on a database of 1000 simulated lung sounds with varying levels of motion artifacts, ambient noise, cycle lengths and crackle intensities, in which ground truths are exactly known. The system performs with average F-score of 91.07% for detecting motion artifacts and 94.43% for respiratory cycle extraction, and an overall F-score of 94.08% for detecting the locations of individual crackles. The process also successfully detects healthy recordings. Preliminary validation is also presented on a small set of 20 patient recordings, for which the system performs comparably. These methods provide quantifiable analysis of respiratory sounds to enable clinicians to distinguish between types of crackles, their timing within the respiratory cycle, and the level of occurrence. Crackles are one of the most common abnormal lung sounds, presenting in multiple cardiorespiratory diseases. These features will contribute to a better understanding of disease severity and progression in an objective, simple and non-invasive way.


Respiratory Sounds , Signal Processing, Computer-Assisted , Auscultation/methods , Humans , Lung , Respiratory Rate
...