Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1518(1): 226-230, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183322

RESUMEN

Metal-organic frameworks (MOFs) are hybrid materials known for their nanoscale pores, which give them high surface areas but generally lead to poor electrical conductivity. Recently, MOFs with high electrical conductivity were established as promising materials for a variety of applications in energy storage and catalysis. Many recent reports investigating the fundamentals of charge transport in these materials focus on the role of the organic ligands. Less consideration, however, is given to the metal ion forming the MOF, which is almost exclusively a late first-row transition metal. Here, we report a moderately conductive porous MOF based on trivalent gallium and 2,3,6,7,10,11-hexahydroxytriphenylene. Gallium, a metal that has not been featured in electrically conductive MOFs so far, has a closed-shell electronic configuration and is present in its trivalent state-in contrast to most conductive MOFs, which are formed by open-shell, divalent transition metals. Our material, made without using any harmful solvents, displays conductivities on the level of 3 mS/cm and a surface area of 196 m2 /g, comparable to transition metal analogs.

2.
Faraday Discuss ; 231(0): 298-304, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34259286

RESUMEN

We report a systematic study on the variation of the physical properties of Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) in the context of their influence on the capacitive behavior of this material in supercapacitor electrodes prepared using the neat MOF. We find that, for this representative material, the sample morphology has a greater impact on the measured electrode performance than differences in bulk electrical conductivity.

3.
Dalton Trans ; 50(20): 6784-6788, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33969844

RESUMEN

Chemical vapor deposition of metal-organic frameworks (MOF-CVD) will facilitate the integration of porous and crystalline coatings in electronic devices. In the two-step MOF-CVD process, a precursor layer is first deposited and subsequently converted to a MOF through exposure to linker vapor. We herein report the impact of different metal oxide and metalcone layers as precursors for zeolitic imidazolate framework ZIF-8 films.

4.
Adv Mater ; 33(17): e2006993, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33733524

RESUMEN

Thin films of crystalline and porous metal-organic frameworks (MOFs) have great potential in membranes, sensors, and microelectronic chips. While the morphology and crystallinity of MOF films can be evaluated using widely available techniques, characterizing their pore size, pore volume, and specific surface area is challenging due to the low amount of material and substrate effects. Positron annihilation lifetime spectroscopy (PALS) is introduced as a powerful method to obtain pore size information and depth profiling in MOF films. The complementarity of this approach to established physisorption-based methods such as quartz crystal microbalance (QCM) gravimetry, ellipsometric porosimetry (EP), and Kr physisorption (KrP) is illustrated. This comprehensive discussion on MOF thin film porosimetry is supported by experimental data for thin films of ZIF-8.

5.
Nat Mater ; 20(1): 93-99, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33106648

RESUMEN

Metal-organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of the unique properties of these microporous materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturized solid-state devices. Conventional MOF patterning methods suffer from low resolution and poorly defined pattern edges. Here, we demonstrate the resist-free, direct X-ray and electron-beam lithography of MOFs. This process avoids etching damage and contamination and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting high-quality patterns have excellent sub-50-nm resolution, and approach the mesopore regime. The compatibility of X-ray and electron-beam lithography with existing micro- and nanofabrication processes will facilitate the integration of MOFs in miniaturized devices.

6.
Chemistry ; 26(47): 10841-10848, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32476184

RESUMEN

Energy-efficient indoors temperature and humidity control can be realised by using the reversible adsorption and desorption of water in porous materials. Stable microporous aluminium-based metal-organic frameworks (MOFs) present promising water sorption properties for this goal. The development of synthesis routes that make use of available and affordable building blocks and avoid the use of organic solvents is crucial to advance this field. In this work, two scalable synthesis routes under mild reaction conditions were developed for aluminium-based MOFs: (1) in aqueous solutions using a continuous-flow reactor and (2) through the vapour-assisted conversion of solid precursors. Fumaric acid, its methylated analogue mesaconic acid, as well as mixtures of the two were used as linkers to obtain polymorph materials with tuneable water sorption properties. The synthesis conditions determine the crystal structure and either the MIL-53 or MIL-68 type structure with square-grid or kagome-grid topology, respectively, is formed. Fine-tuning resulted in new MOF materials thus far inaccessible through conventional synthesis routes. Furthermore, by varying the linker ratio, the water sorption properties can be continuously adjusted while retaining the sigmoidal isotherm shape advantageous for heat transformation and room climatisation applications.

7.
ACS Cent Sci ; 5(8): 1425-1431, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31482125

RESUMEN

A growing demand for indoor atmosphere monitoring relies critically on the ability to reliably and quantitatively detect carbon dioxide. Widespread adoption of CO2 sensors requires vastly improved materials and approaches because selective sensing of CO2 under ambient conditions, where relative humidity (RH) and other atmosphere contaminants provide a complex scenario, is particularly challenging. This report describes an ambient CO2 chemiresistor platform based on nanoporous, electrically conducting two-dimensional metal-organic frameworks (2D MOFs). The CO2 chemiresistive sensitivity of 2D MOFs is attained through the incorporation of imino-semiquinonate moieties, i.e., well-defined N-heteroatom functionalization. The best performance is obtained with Cu3(hexaiminobenzene)2, Cu3HIB2, which shows selective and robust ambient CO2 sensing properties at practically relevant levels (400-2500 ppm). The observed ambient CO2 sensitivity is nearly RH-independent in the range 10-80% RH. Cu3HIB2 shows higher sensitivity over a broader RH range than any other known chemiresistor. Characterization of the CO2-MOF interaction through a combination of in situ optical spectroscopy and density functional theory calculations evidence autogenously generated hydrated adsorption sites and a charge trapping mechanism as responsible for the intriguing CO2 sensing properties of Cu3HIB2.

8.
Chem Commun (Camb) ; 55(68): 10056-10059, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31369024

RESUMEN

Copper dicarboxylate metal-organic framework films are deposited via chemical vapour deposition. Uniform films of CuBDC and CuCDC with an out-of-plane orientation and accessible porosity are obtained from the reaction of Cu and CuO with vaporised dicarboxylic acid linkers.

9.
Nat Commun ; 10(1): 3729, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427584

RESUMEN

The performance of modern chips is strongly related to the multi-layer interconnect structure that interfaces the semiconductor layer with the outside world. The resulting demand to continuously reduce the k-value of the dielectric in these interconnects creates multiple integration challenges and encourages the search for novel materials. Here we report a strategy for the integration of metal-organic frameworks (MOFs) as gap-filling low-k dielectrics in advanced on-chip interconnects. The method relies on the selective conversion of purpose-grown or native metal-oxide films on the metal interconnect lines into MOFs by exposure to organic linker vapor. The proposed strategy is validated for thin films of the zeolitic imidazolate frameworks ZIF-8 and ZIF-67, formed in 2-methylimidazole vapor from ALD ZnO and native CoOx, respectively. Both materials show a Young's modulus and dielectric constant comparable to state-of-the-art porous organosilica dielectrics. Moreover, the fast nucleation and volume expansion accompanying the oxide-to-MOF conversion enable uniform growth and gap-filling of narrow trenches, as demonstrated for 45 nm half-pitch fork-fork capacitors.

10.
ChemistryOpen ; 8(4): 532-538, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31061778

RESUMEN

Anodized aluminum oxides (AAOs) are synthesized and used as catalyst support in combination with Ru as metal in hydrogenation catalysis. SEM and TEM analysis of the as-synthesized AAOs reveal uniform, ordered nanotubes with pore diameters of 18 nm, which are further characterized with Kr physisorption, XRD and FTIR spectroscopy. After impregnation of the AAOs with Ru, the presence of Ru nanoparticles inside the tubular pores is evidenced clearly for the first time via HAADF-STEM-EDX. The Ru-AAOs have been tested for catalytic activity, which showed high conversion and selectivity for the hydrogenation of toluene and butanal.

11.
ACS Cent Sci ; 5(12): 1959-1964, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31893225

RESUMEN

Crystalline, electrically conductive, and intrinsically porous materials are rare. Layered two-dimensional (2D) metal-organic frameworks (MOFs) break this trend. They are porous crystals that exhibit high electrical conductivity and are novel platforms for studying fundamentals of electricity and magnetism in two dimensions. Despite demonstrated applications, electrical transport in these remains poorly understood because of a lack of single crystal studies. Here, studies of single crystals of two 2D MOFs, Ni3(HITP)2 and Cu3(HHTP)2, uncover critical insights into their structure and transport. Conductivity measurements down to 0.3 K suggest metallicity for mesoscopic single crystals of Ni3(HITP)2, which contrasts with apparent activated conductivity for polycrystalline films. Microscopy studies further reveal that these MOFs are not isostructural as previously reported. Notably, single rods exhibit conductivities up to 150 S/cm, which persist even after prolonged exposure to ambient conditions. These single crystal studies confirm that 2D MOFs hold promise as molecularly tunable platforms for fundamental science and applications where porosity and conductivity are critical.

12.
Chem Commun (Camb) ; 53(78): 10750-10756, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28933464

RESUMEN

A lively discussion on new directions in porous crystalline materials took place in June 2017, with the beautiful city of Edinburgh as a backdrop, in the context of the unique Faraday Discussions format. Here, 5 minute presentations were given on papers which had been submitted in advance of the conference, with copious time allocated for in-depth discussion of the work presented. Prof. Mircea Dinca (MIT), chair of the scientific committee, opened the conference by welcoming the many different nationalities attending, and outlining the format of discussions.

15.
Chem Soc Rev ; 46(12): 3853, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28585654

RESUMEN

Correction for 'An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors' by Ivo Stassen et al., Chem. Soc. Rev., 2017, DOI: 10.1039/c7cs00122c.

16.
Chem Sci ; 8(5): 3939-3948, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28553536

RESUMEN

The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 µm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.

17.
Chem Soc Rev ; 46(11): 3185-3241, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28452388

RESUMEN

Metal-organic frameworks (MOFs) are typically highlighted for their potential application in gas storage, separations and catalysis. In contrast, the unique prospects these porous and crystalline materials offer for application in electronic devices, although actively developed, are often underexposed. This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics. Manufacturing these devices will critically depend on the compatibility of MOFs with existing fabrication protocols and predominant standards. Therefore, it is important to focus in parallel on a fundamental understanding of the distinguishing properties of MOFs and eliminating fabrication-related obstacles for integration. The latter implies a shift from the microcrystalline powder synthesis in chemistry labs, towards film deposition and processing in a cleanroom environment. Both the fundamental and applied aspects of this two-pronged approach are discussed. Critical directions for future research are proposed in an updated high-level roadmap to stimulate the next steps towards MOF-based microelectronics within the community.

18.
Chemistry ; 22(41): 14452-60, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27483444

RESUMEN

Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research.

19.
Nat Mater ; 15(3): 304-10, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26657328

RESUMEN

Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.


Asunto(s)
Imidazoles/química , Zeolitas/química , Gases , Membranas Artificiales , Microscopía Electrónica de Rastreo , Estructura Molecular , Propiedades de Superficie , Difracción de Rayos X
20.
J Mater Chem C Mater ; 4(19): 4259-4268, 2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28496980

RESUMEN

Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...