Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 11(8): 1022-1027, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35901196

RESUMEN

Crystalsomes are crystalline capsules that are formed by controlling polymer crystallization to break translational symmetry. While recent studies showed that these crystalline capsules exhibit interesting mechanical properties, thermal behavior, and excellent performance in blood circulation, the closed capsule is undesired for drug delivery applications. We report the formation and characterization of porous crystalsomes where porosity is rendered on the crystalline shells. A miniemulsion is formed using two amphiphilic block copolymers (BCP). The competition between controlled crystallization and phase separation of the BCPs at the emulsion surface leads to multiphase crystalsomes. Subsequently removing one BCP produces porous crystalline capsules.


Asunto(s)
Polímeros , Cápsulas , Cristalización , Emulsiones/química , Polímeros/química , Porosidad
2.
J Biomed Mater Res B Appl Biomater ; 109(10): 1601-1610, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33608965

RESUMEN

Block copolymers (BCPs) are of growing interest because of their extensive utility in tissue engineering, particularly in biomimetic approaches where multifunctionality is critical. We synthesized polycaprolactone-polyacrylic acid (PCL-b-PAA) BCP and crystallized it onto PCL nanofibers, making BCP nanofiber shish kebab (BCP NFSK) structures. When mineralized in 2× simulated body fluid, BCP NFSK mimic the structure of mineralized collagen fibrils. We hypothesized that the addition of a calcium phosphate layer of graded roughness on the nano-structure of the nanofiber shish kebabs would enhance preosteoblast alkaline phosphatase (ALP) activity, which has been shown to be a critical component in bone matrix formation. The objectives in the study were to investigate the effect of mineralization on cell proliferation and ALP activity, and to also investigate the effect of BCP NFSK periodicity, a structural feature describing the distance between PCL-b-PAA crystals on the nanofiber core, on cell proliferation, and ALP activity. ALP activity of cells cultured on the mineralized BCP NFSK template was significantly higher than the nonmineralized BCP NFSK templates. Interestingly, no statistical difference was observed in ALP activity when the periodic varied, indicating that surface chemistry seemed to play a larger role than the surface roughness.


Asunto(s)
Resinas Acrílicas/química , Fosfatos de Calcio/química , Colágeno/química , Nanofibras/química , Poliésteres/química , Andamios del Tejido/química , Células 3T3 , Animales , Materiales Biocompatibles/química , Huesos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Matriz Extracelular/química , Humanos , Ratones , Osteoblastos , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos
3.
Nat Commun ; 11(1): 2152, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358513

RESUMEN

One of the fundamental laws in crystallization is translational symmetry, which accounts for the profound shapes observed in natural mineral crystals and snowflakes. Herein, we report on the spontaneous formation of spherical hollow crystals with broken translational symmetry in crystalline molecular bottlebrush (mBB) polymers. The unique structure is named as mBB crystalsome (mBBC), highlighting its similarity to the classical molecular vesicles. Fluorescence resonance energy transfer (FRET) experiments show that the mBBC formation is driven by local chain overcrowding-induced asymmetric lamella bending, which is further confirmed by correlating crystalsome size with crystallization temperature and mBB's side chain grafting density. Our study unravels a new principle of spontaneous translational symmetry breaking, providing a general route towards designing versatile nanostructures.

4.
ACS Macro Lett ; 9(12): 1773-1778, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653681

RESUMEN

Polymer single crystals tend to be quasi two-dimensional (2D) lamellae and their small lateral surfaces are the starting points of lamella melting and thickening. However, the recently discovered crystalsomes, which are defined for hollow single crystal-like spherical shells, are edgeless, self-confined, and incommensurate with translational symmetry. This work concerns the structure and melting behavior of these edgeless crystalsomes. Poly(l-lactic acid) crystalsomes were grown using a miniemulsion solution crystallization method. Differential scanning calorimetry and in situ wide-angle X-ray diffraction were used to follow the structural evolution of the crystalsomes upon heating. Our results demonstrated that the structure and melting behavior of crystalsomes are curvature-dependent and significantly different from their flat crystal counterpart.

5.
Nat Commun ; 9(1): 3005, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068976

RESUMEN

In water, amphiphilic block copolymers (BCPs) can self-assemble into various micelle structures depicting curved liquid/liquid interface. Crystallization, which is incommensurate with this curved space, often leads to defect accumulation and renders the structures leaky, undermining their potential biomedical applications. Herein we report using an emulsion-solution crystallization method to control the crystallization of an amphiphilic BCP, poly (L-lactide acid)-b-poly (ethylene glycol) (PLLA-b-PEG), at curved liquid/liquid interface. The resultant BCP crystalsomes (BCCs) structurally mimic the classical polymersomes and liposomes yet mechanically are more robust thanks to the single crystal-like crystalline PLLA shell. In blood circulation and biodistribution experiments, fluorophore-loaded BCCs show a 24 h circulation half-life and a 8% particle retention in the blood even at 96 h post injection. We further demonstrate that this good performance can be attributed to controlled polymer crystallization and the unique BCC nanostructure.


Asunto(s)
Tiempo de Circulación Sanguínea , Polímeros/química , Animales , Cápside/química , Simulación por Computador , Cristalización , Femenino , Liposomas , Ratones Endogámicos BALB C , Poliésteres/química , Polietilenglicoles/química , Distribución Tisular
6.
Nanoscale ; 10(1): 268-276, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29210419

RESUMEN

Crystallization is incommensurate with nanoscale curved space due to the lack of three dimensional translational symmetry of the latter. Herein, we report the formation of single-crystal-like, nanosized polyethylene (PE) capsules using a miniemulsion solution crystallization method. The miniemulsion was formed at elevated temperatures using PE organic solution as the oil phase and sodium dodecyl sulfate as the surfactant. Subsequently, cooling the system stepwisely for controlled crystallization led to the formation of hollow, nanosized PE crystalline capsules, which are named as crystalsomes since they mimic the classical self-assembled structures such as liposome, polymersome and colloidosome. We show that the formation of the nanosized PE crystalsomes is driven by controlled crystallization at the curved liquid/liquid interface of the miniemulson droplet. The morphology, structure and mechanical properties of the PE crystalsomes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force spectroscopy. Electron diffraction showed the single-crystal-like nature of the crystalsomes. The incommensurateness between the nanocurved interface and the crystalline packing led to reduced crystallinity and crystallite size of the PE crystalsome, as observed from the X-ray diffraction measurements. Moreover, directly quenching the emulsion below the spinodal line led to the formation of hierarchical porous PE crystalsomes due to the coupling of the PE crystallization and liquid/liquid phase separation. We anticipate that this unique crystalsome represents a new type of nanostructure that might be used as nanodrug carriers and ultrasound contrast agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...