Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Eur J Hum Genet ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678163

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.

2.
Int Rev Neurobiol ; 169: 217-258, 2023.
Article En | MEDLINE | ID: mdl-37482394

Dystonia is characterised as uncontrolled, often painful involuntary muscle contractions that cause abnormal postures and repetitive or twisting movements. These movements can be continuous or sporadic and affect different parts of the body and range in severity. Dystonia and its related conditions present a huge cause of neurological morbidity worldwide. Although therapies are available, achieving optimal symptom control without major unwanted effects remains a challenge. Most pharmacological treatments for dystonia aim to modulate the effects of one or more neurotransmitters in the central nervous system, but doing so effectively and with precision is far from straightforward. In this chapter we discuss the physiology of key neurotransmitters, including dopamine, noradrenaline, serotonin (5-hydroxytryptamine), acetylcholine, GABA, glutamate, adenosine and cannabinoids, and their role in dystonia. We explore the ways in which existing pharmaceuticals as well as novel agents, currently in clinical trial or preclinical development, target dystonia, and their respective advantages and disadvantages. Finally, we discuss current and emerging genetic therapies which may be used to treat genetic forms of dystonia.


Dystonia , Dystonic Disorders , Movement Disorders , Humans , Dystonia/drug therapy , Dystonia/diagnosis , Dystonic Disorders/drug therapy , Dopamine , Neurotransmitter Agents/therapeutic use
3.
Cells ; 12(7)2023 03 30.
Article En | MEDLINE | ID: mdl-37048120

The human dopaminergic system is vital for a broad range of neurological processes, including the control of voluntary movement. Here we report a proband presenting with clinical features of dopamine deficiency: severe infantile parkinsonism-dystonia, characterised by frequent oculogyric crises, dysautonomia and global neurodevelopmental impairment. CSF neurotransmitter analysis was unexpectedly normal. Triome whole-genome sequencing revealed a homozygous variant (c.110C>A, (p.T37K)) in DRD1, encoding the most abundant dopamine receptor (D1) in the central nervous system, most highly expressed in the striatum. This variant was absent from gnomAD, with a CADD score of 27.5. Using an in vitro heterologous expression system, we determined that DRD1-T37K results in loss of protein function. Structure-function modelling studies predicted reduced substrate binding, which was confirmed in vitro. Exposure of mutant protein to the selective D1 agonist Chloro APB resulted in significantly reduced cyclic AMP levels. Numerous D1 agonists failed to rescue the cellular defect, reflected clinically in the patient, who had no benefit from dopaminergic therapy. Our study identifies DRD1 as a new disease-associated gene, suggesting a crucial role for the D1 receptor in motor control.


Dystonia , Dystonic Disorders , Parkinson Disease , Humans , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Dystonic Disorders/genetics
4.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Article En | MEDLINE | ID: mdl-37054711

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Drosophila Proteins , Nervous System Diseases , Adult , Animals , Humans , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mutation/genetics , RNA, Messenger
5.
Neurology ; 100(21): e2214-e2223, 2023 05 23.
Article En | MEDLINE | ID: mdl-37041080

BACKGROUND AND OBJECTIVES: Birk-Landau-Perez syndrome is a genetic disorder caused by biallelic pathogenic variants in SLC30A9 presenting with a complex movement disorder, developmental regression, oculomotor abnormalities, and renal impairment. It has previously been reported in 2 families. We describe the clinical phenotype of 8 further individuals from 4 unrelated families with SLC30A9-related disease. METHOD: Following detailed clinical phenotyping, 1 family underwent research whole-genome sequencing (WGS), 1 research whole-exome sequencing, and 2 diagnostic WGS. Variants of interest were assessed for pathogenicity using in silico prediction tools, homology modeling, and, where relevant, sequencing of complementary DNA (cDNA) for splicing effect. RESULTS: In 2 unrelated families of Pakistani origin (1 consanguineous and 1 not), the same homozygous missense variant in SLC30A9 (c.1253G>T, p.Gly418Val) was identified. Family 1 included 2 affected brothers, and family 2 one affected boy. In family 3, also consanguineous, there were 4 affected siblings homozygous for the variant c.1049delCAG, pAla350del. The fourth family was nonconsanguineous: the 1 affected individual was compound heterozygous for c.1083dup, p.Val362Cysfs*5, and c.1413A>G, p.Ser471=. Despite phenotypic variability between the 4 families, all affected patients manifested with a progressive hyperkinetic movement disorder, associated with oculomotor apraxia and ptosis. None had evidence of severe renal impairment. For the novel missense variant, the conformation of the loop domain and packing of transmembrane helices are likely to be disrupted based on structure modeling. Its presence in 2 unrelated Pakistani families suggests a possible founder variant. For the synonymous variant p.Ser471=, an effect on splicing was confirmed through cDNA analysis. DISCUSSION: Pathogenic variants in SLC30A9 cause a progressive autosomal recessive neurologic syndrome associated with a complex hyperkinetic movement disorder. Our report highlights the expanding disease phenotype, which can present with a wider spectrum of severity than has previously been recognized.


Cation Transport Proteins , Hyperkinesis , Male , Humans , DNA, Complementary , Phenotype , Mutation, Missense/genetics , Homozygote , Pedigree , Transcription Factors , Cell Cycle Proteins
8.
Mov Disord ; 37(7): 1547-1554, 2022 07.
Article En | MEDLINE | ID: mdl-35722775

BACKGROUND: Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE: The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS: We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS: Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION: We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Dystonia , Dystonic Disorders , GTP-Binding Protein alpha Subunits, Gi-Go , Movement Disorders , Parkinsonian Disorders , Dystonia/genetics , Dystonic Disorders/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Humans , Movement Disorders/genetics , Parkinsonian Disorders/genetics , Phenotype
9.
J Inherit Metab Dis ; 44(6): 1489-1502, 2021 11.
Article En | MEDLINE | ID: mdl-34245036

Inherited disorders of neurotransmitter metabolism are a group of rare diseases, which are caused by impaired synthesis, transport, or degradation of neurotransmitters or cofactors and result in various degrees of delayed or impaired psychomotor development. To assess the effect of neurotransmitter deficiencies on intelligence, quality of life, and behavior, the data of 148 patients in the registry of the International Working Group on Neurotransmitter Related Disorders (iNTD) was evaluated using results from standardized age-adjusted tests and questionnaires. Patients with a primary disorder of monoamine metabolism had lower IQ scores (mean IQ 58, range 40-100) within the range of cognitive impairment (<70) compared to patients with a BH4 deficiency (mean IQ 84, range 40-129). Short attention span and distractibility were most frequently mentioned by parents, while patients reported most frequently anxiety and distractibility when asked for behavioral traits. In individuals with succinic semialdehyde dehydrogenase deficiency, self-stimulatory behaviors were commonly reported by parents, whereas in patients with dopamine transporter deficiency, DNAJC12 deficiency, and monoamine oxidase A deficiency, self-injurious or mutilating behaviors have commonly been observed. Phobic fears were increased in patients with 6-pyruvoyltetrahydropterin synthase deficiency, while individuals with sepiapterin reductase deficiency frequently experienced communication and sleep difficulties. Patients with BH4 deficiencies achieved significantly higher quality of life as compared to other groups. This analysis of the iNTD registry data highlights: (a) difference in IQ and subdomains of quality of life between BH4 deficiencies and primary neurotransmitter-related disorders and (b) previously underreported behavioral traits.


Neurotransmitter Agents/deficiency , Phenotype , Quality of Life , Adolescent , Adult , Behavior , Child , Child, Preschool , Cognitive Dysfunction/etiology , Female , Humans , Infant , Intelligence , Internationality , Male , Middle Aged , Registries , Young Adult
10.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Article En | MEDLINE | ID: mdl-34314705

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Developmental Disabilities/genetics , Drosophila Proteins/genetics , Eye Diseases, Hereditary/genetics , Intellectual Disability/genetics , Karyopherins/genetics , Musculoskeletal Abnormalities/genetics , beta Karyopherins/genetics , ran GTP-Binding Protein/genetics , Alleles , Amino Acid Sequence , Animals , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Eye Diseases, Hereditary/metabolism , Eye Diseases, Hereditary/pathology , Female , Gene Dosage , Gene Expression Regulation, Developmental , Genome, Human , Humans , Infant , Infant, Newborn , Intellectual Disability/metabolism , Intellectual Disability/pathology , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Male , Musculoskeletal Abnormalities/metabolism , Musculoskeletal Abnormalities/pathology , Mutation , Neurons/metabolism , Neurons/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Whole Genome Sequencing , beta Karyopherins/metabolism , ran GTP-Binding Protein/metabolism
12.
Mov Disord ; 36(5): 1104-1114, 2021 05.
Article En | MEDLINE | ID: mdl-33934385

Adenylyl cyclase 5 (ADCY5)-related phenotypes comprise an expanding disease continuum, but much remains to be understood about the underlying pathogenic mechanisms of the disease. ADCY5-related disease comprises a spectrum of hyperkinetic disorders involving chorea, myoclonus, and/or dystonia, often with paroxysmal exacerbations. Hypotonia, developmental delay, and intellectual disability may be present. The causative gene encodes adenylyl cyclase, the enzyme responsible for the conversion of adenosine triphosphate (ATP) to cyclic adenosine-3',5'-monophosphate (cAMP). cAMP is a second messenger that exerts a wide variety of effects via several intracellular signaling pathways. ADCY5 is the most commonly expressed isoform of adenylyl cyclase in medium spiny neurons (MSNs) of the striatum, and it integrates and controls dopaminergic signaling. Through cAMP pathway, ADCY5 is a key regulator of the cortical and thalamic signaling that control initiation of voluntary movements and prevention of involuntary movements. Gain-of-function mutations in ADCY5 have been recently linked to a rare genetic disorder called ADCY5-related dyskinesia, where dysregulation of the cAMP pathway leads to reduced inhibitory activity and involuntary hyperkinetic movements. Here, we present an update on the neurobiology of ADCY5, together with a detailed overview of the reported clinical phenotypes and genotypes. Although a range of therapeutic approaches has been trialed, there are currently no disease-modifying treatments. Improved in vitro and in vivo laboratory models will no doubt increase our understanding of the pathogenesis of this rare genetic movement disorder, which will improve diagnosis, and also facilitate the development of precision medicine approaches for this, and other forms of hyperkinesia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Dyskinesias , Dystonic Disorders , Movement Disorders , Adenylyl Cyclases/genetics , Dystonic Disorders/genetics , Genotype , Humans , Phenotype
14.
Brain ; 144(9): 2610-2615, 2021 10 22.
Article En | MEDLINE | ID: mdl-33871597

The homotypic fusion and protein sorting (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the aetiopathogenesis of inherited dystonias (i.e. VPS16, VPS41, and VPS11). Functional and microstructural studies conducted on patient-derived fibroblasts carrying mutations of HOPS complex subunits displayed clear abnormalities of the lysosomal and autophagic compartments. We propose to name this group of diseases HOPS-associated neurological disorders (HOPSANDs), which are mainly characterized by dystonic presentations. The delineation of HOPSANDs further confirms the connection of lysosomal and autophagic dysfunction with the pathogenesis of dystonia, prompting researchers to find innovative therapies targeting this pathway.


Dystonia/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Nervous System Diseases/metabolism , Protein Transport/physiology , Vesicular Transport Proteins/metabolism , Animals , Dystonia/genetics , Dystonia/pathology , Endosomes/genetics , Endosomes/pathology , Humans , Lysosomes/genetics , Lysosomes/pathology , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Vesicular Transport Proteins/genetics
15.
Neurology ; 96(11): e1539-e1550, 2021 03 16.
Article En | MEDLINE | ID: mdl-33504645

OBJECTIVE: To explore the phenotypic spectrum of RHOBTB2-related disorders and specifically to determine whether patients fulfill criteria for alternating hemiplegia of childhood (AHC), we report the clinical features of 11 affected individuals. METHODS: Individuals with RHOBTB2-related disorders were identified through a movement disorder clinic at a specialist pediatric center, with additional cases identified through collaboration with other centers internationally. Clinical data were acquired through retrospective case-note review. RESULTS: Eleven affected patients were identified. All had heterozygous missense variants involving exon 9 of RHOBTB2, confirmed as de novo in 9 cases. All had a complex motor phenotype, including at least 2 different kinds of movement disorder, e.g., ataxia and dystonia. Many patients demonstrated several features fulfilling the criteria for AHC: 10 patients had a movement disorder including paroxysmal elements, and 8 experienced hemiplegic episodes. In contrast to classic AHC, commonly caused by mutations in ATP1A3, these events were reported later only in RHOBTB2 mutation-positive patients from 20 months of age. Seven patients had epilepsy, but of these, 4 patients achieved seizure freedom. All patients had intellectual disability, usually moderate to severe. Other features include episodes of marked skin color change and gastrointestinal symptoms, each in 4 patients. CONCLUSION: Although heterozygous RHOBTB2 mutations were originally described in early infantile epileptic encephalopathy type 64, our study confirms that they account for a more expansive clinical phenotype, including a complex polymorphic movement disorder with paroxysmal elements resembling AHC. RHOBTB2 testing should therefore be considered in patients with an AHC-like phenotype, particularly those negative for ATPA1A3 mutations.


GTP-Binding Proteins/genetics , Hemiplegia/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Mutation, Missense , Phenotype , Young Adult
17.
Brain ; 143(11): 3242-3261, 2020 12 05.
Article En | MEDLINE | ID: mdl-33150406

Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.


Dystonic Disorders/genetics , Histone-Lysine N-Methyltransferase/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Deletion , Cohort Studies , Computer Simulation , Deep Brain Stimulation , Disease Progression , Dystonic Disorders/therapy , Endocrine System Diseases/complications , Endocrine System Diseases/genetics , Female , Fetal Growth Retardation/genetics , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Laryngeal Diseases/etiology , Laryngeal Diseases/therapy , Male , Mutation , Mutation, Missense , Phenotype , Quality of Life , Treatment Outcome , Young Adult
18.
Ann Neurol ; 88(5): 867-877, 2020 11.
Article En | MEDLINE | ID: mdl-32808683

OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.


Dystonia/genetics , Lysosomal Storage Diseases/genetics , Vesicular Transport Proteins/genetics , Adult , Cost of Illness , Dystonia/pathology , Exome/genetics , Female , Fibroblasts/pathology , Genetic Predisposition to Disease/genetics , Genetic Variation , Humans , Lysosomal Storage Diseases/pathology , Male , Middle Aged , Mutation/genetics , Pedigree
19.
Am J Med Genet A ; 182(9): 2129-2132, 2020 09.
Article En | MEDLINE | ID: mdl-32627382

YY1 mutations cause Gabriele-de Vries syndrome, a recently described condition involving cognitive impairment, facial dysmorphism and intrauterine growth restriction. Movement disorders were reported in 5/10 cases of the original series, but no detailed description was provided. Here we present a 21-year-old woman with a mild intellectual deficit, facial dysmorphism and a complex movement disorder including an action tremor, cerebellar ataxia, dystonia, and partial ocular apraxia as the presenting and most striking feature. Whole-exome sequencing revealed a novel heterozygous de novo mutation in YY1 [NM: 003403.4 (YY1): c.907 T > C; p.(Cys303Arg)], classified as pathogenic according to the ACMG guidelines.


Movement Disorders/genetics , Neurodevelopmental Disorders/genetics , YY1 Transcription Factor/genetics , Child , Child, Preschool , Exome/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Intellectual Disability/pathology , Movement Disorders/pathology , Neurodevelopmental Disorders/pathology , Phenotype , Exome Sequencing
20.
Curr Opin Neurol ; 33(4): 500-507, 2020 08.
Article En | MEDLINE | ID: mdl-32657892

PURPOSE OF REVIEW: The discovery of new disease-causing genes and availability of next-generation sequencing platforms have both progressed rapidly over the last few years. For the practicing neurologist, this presents an increasingly bewildering array both of potential diagnoses and of means to investigate them. We review the latest newly described genetic conditions associated with dystonia, and also address how the changing landscape of gene discovery and genetic testing can best be approached, from both a research and a clinical perspective. RECENT FINDINGS: Several new genetic causes for disorders in which dystonia is a feature have been described in the last 2 years, including ZNF142, GSX2, IRF2BPL, DEGS1, PI4K2A, CAMK4, VPS13D and VAMP2. Dystonia has also been a newly described feature or alternative phenotype of several other genetic conditions, notably for genes classically associated with several forms of epilepsy. The DYT system for classifying genetic dystonias, however, last recognized a new gene discovery (KMT2B) in 2016. SUMMARY: Gene discovery for dystonic disorders proceeds rapidly, but a high proportion of cases remain undiagnosed. The proliferation of rare disorders means that it is no longer realistic for clinicians to aim for diagnosis to the level of predicting genotype from phenotype in all cases, but rational and adaptive use of available genetic tests can certainly expedite diagnosis.


Dystonia/diagnosis , Dystonic Disorders/diagnosis , Genetic Testing , Genotype , Phenotype , Dystonia/genetics , Dystonic Disorders/genetics , Humans
...