Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Sci Rep ; 14(1): 5392, 2024 03 05.
Article En | MEDLINE | ID: mdl-38443454

The detection of Activities of Daily Living (ADL) holds significant importance in a range of applications, including elderly care and health monitoring. Our research focuses on the relevance of ADL detection in elderly care, highlighting the importance of accurate and unobtrusive monitoring. In this paper, we present a novel approach that that leverages smartphone data as the primary source for detecting ADLs. Additionally, we investigate the possibilities offered by ambient sensors installed in smart home environments to complement the smartphone data and optimize the ADL detection. Our approach uses a Long Short-Term Memory (LSTM) model. One of the key contributions of our work is defining ADL detection as a multilabeling problem, allowing us to detect different activities that occur simultaneously. This is particularly valuable since in real-world scenarios, individuals can perform multiple activities concurrently, such as cooking while watching TV. We also made use of unlabeled data to further enhance the accuracy of our model. Performance is evaluated on a real-world collected dataset, strengthening reliability of our findings. We also made the dataset openly available for further research and analysis. Results show that utilizing smartphone data alone already yields satisfactory results, above 50% true positive rate and balanced accuracy for all activities, providing a convenient and non-intrusive method for ADL detection. However, by incorporating ambient sensors, as an additional data source, one can improve the balanced accuracy of the ADL detection by 7% and 8% of balanced accuracy and true positive rate respectively, on average.


Activities of Daily Living , Smartphone , Humans , Reproducibility of Results , Cooking , Memory, Long-Term
2.
Brain Behav ; 14(1): e3360, 2024 01.
Article En | MEDLINE | ID: mdl-38376015

OBJECTIVE: To investigate the changes in activity energy expenditure (AEE) throughout daytime cluster headache (CH) attacks in patients with chronic CH and to evaluate the usefulness of actigraphy as a digital biomarker of CH attacks. BACKGROUND: CH is a primary headache disorder characterized by attacks of severe to very severe unilateral pain (orbital, supraorbital, temporal, or in any combination of these sites), with ipsilateral cranial autonomic symptoms and/or a sense of restlessness or agitation. We hypothesized increased AEE from hyperactivity during attacks measured by actigraphy. METHODS: An observational study including patients with chronic CH was conducted. During 21 days, patients wore an actigraphy device on the nondominant wrist and recorded CH attack-related data in a dedicated smartphone application. Accelerometer data were used for the calculation of AEE before and during daytime CH attacks that occurred in ambulatory settings, and without restrictions on acute and preventive headache treatment. We compared the activity and movements during the pre-ictal, ictal, and postictal phases with data from wrist-worn actigraphy with time-concordant intervals during non-headache periods. RESULTS: Four patients provided 34 attacks, of which 15 attacks met the eligibility criteria for further analysis. In contrast with the initial hypothesis of increased energy expenditure during CH attacks, a decrease in movement was observed during the pre-ictal phase (30 min before onset to onset) and during the headache phase. A significant decrease (p < .01) in the proportion of high-intensity movement during headache attacks, of which the majority were oxygen-treated, was observed. This trend was less present for low-intensity movements. CONCLUSION: The unexpected decrease in AEE during the pre-ictal and headache phase of daytime CH attacks in patients with chronic CH under acute and preventive treatment in ambulatory settings has important implications for future research on wrist actigraphy in CH.


Cluster Headache , Humans , Cluster Headache/diagnosis , Cluster Headache/therapy , Wrist , Actigraphy , Pain , Headache
3.
Nat Mach Intell ; 4(12): 1174-1184, 2022.
Article En | MEDLINE | ID: mdl-36567960

Medicines based on messenger RNA (mRNA) hold immense potential, as evidenced by their rapid deployment as COVID-19 vaccines. However, worldwide distribution of mRNA molecules has been limited by their thermostability, which is fundamentally limited by the intrinsic instability of RNA molecules to a chemical degradation reaction called in-line hydrolysis. Predicting the degradation of an RNA molecule is a key task in designing more stable RNA-based therapeutics. Here, we describe a crowdsourced machine learning competition ('Stanford OpenVaccine') on Kaggle, involving single-nucleotide resolution measurements on 6,043 diverse 102-130-nucleotide RNA constructs that were themselves solicited through crowdsourcing on the RNA design platform Eterna. The entire experiment was completed in less than 6 months, and 41% of nucleotide-level predictions from the winning model were within experimental error of the ground truth measurement. Furthermore, these models generalized to blindly predicting orthogonal degradation data on much longer mRNA molecules (504-1,588 nucleotides) with improved accuracy compared with previously published models. These results indicate that such models can represent in-line hydrolysis with excellent accuracy, supporting their use for designing stabilized messenger RNAs. The integration of two crowdsourcing platforms, one for dataset creation and another for machine learning, may be fruitful for other urgent problems that demand scientific discovery on rapid timescales.

4.
BMC Med Inform Decis Mak ; 22(1): 268, 2022 10 15.
Article En | MEDLINE | ID: mdl-36243691

BACKGROUND: Insomnia, eating disorders, heart problems and even strokes are just some of the illnesses that reveal the negative impact of stress overload on health and well-being. Early detection of stress is therefore of utmost importance. Whereas the gold-standard for detecting stress is by means of questionnaires, more recent work uses wearable sensors to find continuous and qualitative physical markers of stress. As some physiological stress responses, e.g. increased heart rate or sweating and chills, might also occur when doing sports, a more profound approach is needed for stress detection than purely considering physiological data. METHODS: In this paper, we analyse the added value of context information during stress detection from wearable data. We do so by comparing the performance of models trained purely on physiological data and models trained on physiological and context data. We consider the user's activity and hours of sleep as context information, where we compare the influence of user-given context versus machine learning derived context. RESULTS: Context-aware models reach higher accuracy and lower standard deviations in comparison to the baseline (physiological) models. We also observe higher accuracy and improved weighted F1 score when incorporating machine learning predicted, instead of user-given, activities as context information. CONCLUSIONS: In this paper we show that considering context information when performing stress detection from wearables leads to better performance. We also show that it is possible to move away from human labeling and rely only on the wearables for both physiology and context.


Wearable Electronic Devices , Awareness , Humans , Machine Learning
5.
BMC Med Inform Decis Mak ; 22(1): 87, 2022 03 31.
Article En | MEDLINE | ID: mdl-35361224

BACKGROUND: The diagnosis of headache disorders relies on the correct classification of individual headache attacks. Currently, this is mainly done by clinicians in a clinical setting, which is dependent on subjective self-reported input from patients. Existing classification apps also rely on self-reported information and lack validation. Therefore, the exploratory mBrain study investigates moving to continuous, semi-autonomous and objective follow-up and classification based on both self-reported and objective physiological and contextual data. METHODS: The data collection set-up of the observational, longitudinal mBrain study involved physiological data from the Empatica E4 wearable, data-driven machine learning (ML) algorithms detecting activity, stress and sleep events from the wearables' data modalities, and a custom-made application to interact with these events and keep a diary of contextual and headache-specific data. A knowledge-based classification system for individual headache attacks was designed, focusing on migraine, cluster headache (CH) and tension-type headache (TTH) attacks, by using the classification criteria of ICHD-3. To show how headache and physiological data can be linked, a basic knowledge-based system for headache trigger detection is presented. RESULTS: In two waves, 14 migraine and 4 CH patients participated (mean duration 22.3 days). 133 headache attacks were registered (98 by migraine, 35 by CH patients). Strictly applying ICHD-3 criteria leads to 8/98 migraine without aura and 0/35 CH classifications. Adapted versions yield 28/98 migraine without aura and 17/35 CH classifications, with 12/18 participants having mostly diagnosis classifications when episodic TTH classifications (57/98 and 32/35) are ignored. CONCLUSIONS: Strictly applying the ICHD-3 criteria on individual attacks does not yield good classification results. Adapted versions yield better results, with the mostly classified phenotype (migraine without aura vs. CH) matching the diagnosis for 12/18 patients. The absolute number of migraine without aura and CH classifications is, however, rather low. Example cases can be identified where activity and stress events explain patient-reported headache triggers. Continuous improvement of the data collection protocol, ML algorithms, and headache classification criteria (including the investigation of integrating physiological data), will further improve future headache follow-up, classification and trigger detection. Trial registration This trial was retrospectively registered with number NCT04949204 on 24 June 2021 at www. CLINICALTRIALS: gov .


Headache Disorders , Migraine Disorders , Follow-Up Studies , Headache , Headache Disorders/diagnosis , Humans , Migraine Disorders/diagnosis , Self Report
6.
ArXiv ; 2021 Oct 14.
Article En | MEDLINE | ID: mdl-34671698

Messenger RNA-based medicines hold immense potential, as evidenced by their rapid deployment as COVID-19 vaccines. However, worldwide distribution of mRNA molecules has been limited by their thermostability, which is fundamentally limited by the intrinsic instability of RNA molecules to a chemical degradation reaction called in-line hydrolysis. Predicting the degradation of an RNA molecule is a key task in designing more stable RNA-based therapeutics. Here, we describe a crowdsourced machine learning competition ("Stanford OpenVaccine") on Kaggle, involving single-nucleotide resolution measurements on 6043 102-130-nucleotide diverse RNA constructs that were themselves solicited through crowdsourcing on the RNA design platform Eterna. The entire experiment was completed in less than 6 months, and 41% of nucleotide-level predictions from the winning model were within experimental error of the ground truth measurement. Furthermore, these models generalized to blindly predicting orthogonal degradation data on much longer mRNA molecules (504-1588 nucleotides) with improved accuracy compared to previously published models. Top teams integrated natural language processing architectures and data augmentation techniques with predictions from previous dynamic programming models for RNA secondary structure. These results indicate that such models are capable of representing in-line hydrolysis with excellent accuracy, supporting their use for designing stabilized messenger RNAs. The integration of two crowdsourcing platforms, one for data set creation and another for machine learning, may be fruitful for other urgent problems that demand scientific discovery on rapid timescales.

7.
BMC Med Inform Decis Mak ; 20(Suppl 4): 191, 2020 12 14.
Article En | MEDLINE | ID: mdl-33317504

BACKGROUND: Leveraging graphs for machine learning tasks can result in more expressive power as extra information is added to the data by explicitly encoding relations between entities. Knowledge graphs are multi-relational, directed graph representations of domain knowledge. Recently, deep learning-based techniques have been gaining a lot of popularity. They can directly process these type of graphs or learn a low-dimensional numerical representation. While it has been shown empirically that these techniques achieve excellent predictive performances, they lack interpretability. This is of vital importance in applications situated in critical domains, such as health care. METHODS: We present a technique that mines interpretable walks from knowledge graphs that are very informative for a certain classification problem. The walks themselves are of a specific format to allow for the creation of data structures that result in very efficient mining. We combine this mining algorithm with three different approaches in order to classify nodes within a graph. Each of these approaches excels on different dimensions such as explainability, predictive performance and computational runtime. RESULTS: We compare our techniques to well-known state-of-the-art black-box alternatives on four benchmark knowledge graph data sets. Results show that our three presented approaches in combination with the proposed mining algorithm are at least competitive to the black-box alternatives, even often outperforming them, while being interpretable. CONCLUSIONS: The mining of walks is an interesting alternative for node classification in knowledge graphs. Opposed to the current state-of-the-art that uses deep learning techniques, it results in inherently interpretable or transparent models without a sacrifice in terms of predictive performance.


Algorithms , Pattern Recognition, Automated , Humans , Knowledge , Machine Learning
8.
Sensors (Basel) ; 20(4)2020 Feb 20.
Article En | MEDLINE | ID: mdl-32093134

In industry, dashboards are often used to monitor fleets of assets, such as trains, machines or buildings. In such industrial fleets, the vast amount of sensors evolves continuously, new sensor data exchange protocols and data formats are introduced, new visualization types may need to be introduced and existing dashboard visualizations may need to be updated in terms of displayed sensors. These requirements motivate the development of dynamic dashboarding applications. These, as opposed to fixed-structure dashboard applications, allow users to create visualizations at will and do not have hard-coded sensor bindings. The state-of-the-art in dynamic dashboarding does not cope well with the frequent additions and removals of sensors that must be monitored-these changes must still be configured in the implementation or at runtime by a user. Also, the user is presented with an overload of sensors, aggregations and visualizations to select from, which may sometimes even lead to the creation of dashboard widgets that do not make sense. In this paper, we present a dynamic dashboard that overcomes these problems. Sensors, visualizations and aggregations can be discovered automatically, since they are provided as RESTful Web Things on a Web Thing Model compliant gateway. The gateway also provides semantic annotations of the Web Things, describing what their abilities are. A semantic reasoner can derive visualization suggestions, given the Thing annotations, logic rules and a custom dashboard ontology. The resulting dashboarding application automatically presents the available sensors, visualizations and aggregations that can be used, without requiring sensor configuration, and assists the user in building dashboards that make sense. This way, the user can concentrate on interpreting the sensor data and detecting and solving operational problems early.

...