Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Physiol ; 597(15): 3817-3832, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31173379

RESUMEN

KEY POINTS: Association of plasma membrane BKCa channels with BK-ß subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCa channel (mitoBKCa ) by BK-ß subunits is not established. MitoBKCa -α and the regulatory BK-ß1 subunit associate in mouse cardiac mitochondria. A large fraction of mitoBKCa display properties similar to that of plasma membrane BKCa when associated with BK-ß1 (left-shifted voltage dependence of activation, V1/2  = -55 mV, 12 µm matrix Ca2+ ). In BK-ß1 knockout mice, cardiac mitoBKCa displayed a low Po and a depolarized V1/2 of activation (+47 mV at 12 µm matrix Ca2+ ) Co-expression of BKCa with the BK-ß1 subunit in HeLa cells doubled the density of BKCa in mitochondria. The present study supports the view that the cardiac mitoBKCa channel is functionally modulated by the BK-ß1 subunit; proper targeting and activation of mitoBKCa shapes mitochondrial Ca2+ handling. ABSTRACT: Association of the plasma membrane BKCa channel with auxiliary BK-ß1-4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa ) with regulatory subunits is unknown. We report that mitoBKCa functionally associates with its regulatory subunit BK-ß1 in adult rodent cardiomyocytes. Cardiac mitoBKCa is a calcium- and voltage-activated channel that is sensitive to paxilline with a large conductance for K+ of 300 pS. Additionally, mitoBKCa displays a high open probability (Po ) and voltage half-activation (V1/2  = -55 mV, n = 7) resembling that of plasma membrane BKCa when associated with its regulatory BK-ß1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa -α and its BK-ß1 subunit. Mitochondria from the BK-ß1 knockout (KO) mice showed sparse mitoBKCa currents (five patches with mitoBKCa activity out of 28 total patches from n = 5 different hearts), displaying a depolarized V1/2 of activation (+47 mV in 12 µm matrix Ca2+ ). The reduced activity of mitoBKCa was accompanied by a high expression of BKCa transcript in the BK-ß1 KO, suggesting a lower abundance of mitoBKCa channels in this genotype. Accordingly, BK-ß1subunit increased the localization of BKDEC (i.e. the splice variant of BKCa that specifically targets mitochondria) into mitochondria by two-fold. Importantly, both paxilline-treated and BK-ß1 KO mitochondria displayed a more rapid Ca2+ overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCa associates with its regulatory BK-ß1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCa channel that helps to maintain mitochondrial Ca2+ homeostasis.


Asunto(s)
Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Activación del Canal Iónico , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Miocitos Cardíacos/fisiología , Unión Proteica , Ratas , Ratas Sprague-Dawley
2.
J Mol Cell Cardiol ; 128: 198-211, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742811

RESUMEN

Heart failure is associated with hypertrophying of cardiomyocytes and changes in transcriptional activity. Studies from rapidly dividing cells in culture have suggested that transcription may be compartmentalized into factories within the nucleus, but this phenomenon has not been tested in vivo and the role of nuclear architecture in cardiac gene regulation is unknown. While alterations to transcription have been linked to disease, little is known about the regulation of the spatial organization of transcription and its properties in the pathological setting. In the present study, we investigate the structural features of endogenous transcription factories in the heart and determine the principles connecting chromatin structure to transcriptional regulation in vivo. Super-resolution imaging of endogenous RNA polymerase II clusters in neonatal and adult cardiomyocytes revealed distinct properties of transcription factories in response to pathological stress: neonatal nuclei demonstrated changes in number of clusters, with parallel increases in nuclear area, while the adult nuclei underwent changes in size and intensity of RNA polymerase II foci. Fluorescence in situ hybridization-based labeling of genes revealed locus-specific relationships between expression change and anatomical localization-with respect to nuclear periphery and heterochromatin regions, both sites associated with gene silencing-in the nuclei of cardiomyocytes in hearts (but not liver hepatocytes) of mice subjected to pathologic stimuli that induce heart failure. These findings demonstrate a role for chromatin organization and rearrangement of nuclear architecture for cell type-specific transcription in vivo during disease. RNA polymerase II ChIP and chromatin conformation capture studies in the same model system demonstrate formation and reorganization of distinct nuclear compartments regulating gene expression. These findings reveal locus-specific compartmentalization of stress-activated, housekeeping and silenced genes in the anatomical context of the endogenous nucleus, revealing basic principles of global chromatin structure and nuclear architecture in the regulation of gene expression in healthy and diseased conditions.


Asunto(s)
Insuficiencia Cardíaca/genética , Corazón/diagnóstico por imagen , ARN Polimerasa II/genética , Transcripción Genética/genética , Animales , Animales Recién Nacidos , Cromatina/genética , Cromatina/aislamiento & purificación , Regulación de la Expresión Génica , Corazón/fisiopatología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/diagnóstico por imagen , Humanos , Hibridación Fluorescente in Situ , Ratones , Imagen Molecular/métodos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Polimerasa II/aislamiento & purificación , Activación Transcripcional/genética
3.
Mitochondrion ; 33: 84-101, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27592226

RESUMEN

Mitochondrial BKCa channel, mitoBKCa, regulates mitochondria function in the heart but information on its protein partnerships in cardiac mitochondria is missing. A directed proteomic approach discovered the novel interaction of BKCa with Tom22, a component of the mitochondrion outer membrane import system, and the adenine nucleotide translocator (ANT). The expressed protein partners co-immunoprecipitated and co-segregated into mitochondrial fractions in HEK293T cells. The BKCa 50 amino acid splice insert, DEC, facilitated BKCa interaction with ANT. Further, BKCa transmembrane domain was required for the association with both Tom22 and ANT. The results serve as a working framework to understand mitoBKCa import and functional relationships.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Miocardio/enzimología , Animales , Células HEK293 , Humanos , Inmunoprecipitación , Masculino , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Unión Proteica , Mapas de Interacción de Proteínas , Proteómica , Ratas Sprague-Dawley
4.
J Biol Chem ; 291(30): 15428-46, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27226577

RESUMEN

Transcriptome remodeling in heart disease occurs through the coordinated actions of transcription factors, histone modifications, and other chromatin features at pathology-associated genes. The extent to which genome-wide chromatin reorganization also contributes to the resultant changes in gene expression remains unknown. We examined the roles of two chromatin structural proteins, Ctcf (CCCTC-binding factor) and Hmgb2 (high mobility group protein B2), in regulating pathologic transcription and chromatin remodeling. Our data demonstrate a reciprocal relationship between Hmgb2 and Ctcf in controlling aspects of chromatin structure and gene expression. Both proteins regulate each others' expression as well as transcription in cardiac myocytes; however, only Hmgb2 does so in a manner that involves global reprogramming of chromatin accessibility. We demonstrate that the actions of Hmgb2 on local chromatin accessibility are conserved across genomic loci, whereas the effects on transcription are loci-dependent and emerge in concert with histone modification and other chromatin features. Finally, although both proteins share gene targets, Hmgb2 and Ctcf, neither binds these genes simultaneously nor do they physically colocalize in myocyte nuclei. Our study uncovers a previously unknown relationship between these two ubiquitous chromatin proteins and provides a mechanistic explanation for how Hmgb2 regulates gene expression and cellular phenotype. Furthermore, we provide direct evidence for structural remodeling of chromatin on a genome-wide scale in the setting of cardiac disease.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica/fisiología , Proteína HMGB2/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Represoras/metabolismo , Animales , Factor de Unión a CCCTC , Cromatina/genética , Epigenómica , Femenino , Células HEK293 , Proteína HMGB2/genética , Células HeLa , Humanos , Ratones , Proteínas Represoras/genética
5.
Sci Transl Med ; 8(334): 334ra54, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27075628

RESUMEN

Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Homeostasis/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animales , Autofagia/efectos de los fármacos , Proteínas de Unión al Calcio , Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/genética , Dinaminas/metabolismo , Femenino , Eliminación de Gen , Glucosa/metabolismo , Humanos , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias Musculares/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
6.
J Am Heart Assoc ; 5(1)2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26802104

RESUMEN

BACKGROUND: Estrogen pretreatment has been shown to attenuate the development of heart hypertrophy, but it is not known whether estrogen could also rescue heart failure (HF). Furthermore, the heart has all the machinery to locally biosynthesize estrogen via aromatase, but the role of local cardiac estrogen synthesis in HF has not yet been studied. Here we hypothesized that cardiac estrogen is reduced in HF and examined whether exogenous estrogen therapy can rescue HF. METHODS AND RESULTS: HF was induced by transaortic constriction in mice, and once mice reached an ejection fraction (EF) of ≈35%, they were treated with estrogen for 10 days. Cardiac structure and function, angiogenesis, and fibrosis were assessed, and estrogen was measured in plasma and in heart. Cardiac estrogen concentrations (6.18±1.12 pg/160 mg heart in HF versus 17.79±1.28 pg/mL in control) and aromatase transcripts (0.19±0.04, normalized to control, P<0.05) were significantly reduced in HF. Estrogen therapy increased cardiac estrogen 3-fold and restored aromatase transcripts. Estrogen also rescued HF by restoring ejection fraction to 53.1±1.3% (P<0.001) and improving cardiac hemodynamics both in male and female mice. Estrogen therapy stimulated angiogenesis as capillary density increased from 0.66±0.07 in HF to 2.83±0.14 (P<0.001, normalized to control) and reversed the fibrotic scarring observed in HF (45.5±2.8% in HF versus 5.3±1.0%, P<0.001). Stimulation of angiogenesis by estrogen seems to be one of the key mechanisms, since in the presence of an angiogenesis inhibitor estrogen failed to rescue HF (ejection fraction=29.3±2.1%, P<0.001 versus E2). CONCLUSIONS: Estrogen rescues pre-existing HF by restoring cardiac estrogen and aromatase, stimulating angiogenesis, and suppressing fibrosis.


Asunto(s)
Estradiol/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Disfunción Ventricular Izquierda/tratamiento farmacológico , Animales , Aromatasa/genética , Aromatasa/metabolismo , Modelos Animales de Enfermedad , Estradiol/sangre , Receptor beta de Estrógeno/efectos de los fármacos , Receptor beta de Estrógeno/metabolismo , Femenino , Fibrosis , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Neovascularización Fisiológica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Recuperación de la Función , Transducción de Señal/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Disfunción Ventricular Izquierda/sangre , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos
7.
Sci Rep ; 5: 14766, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26424175

RESUMEN

Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.


Asunto(s)
Fluorescencia , Microscopía Fluorescente/métodos , Modelos Teóricos , Fotoblanqueo , Algoritmos , Colorantes Fluorescentes
8.
Methods ; 88: 48-56, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26123183

RESUMEN

STED (stimulated emission depletion) is a popular super-resolution fluorescence microscopy technique. In this paper, we present a concise guide to building a resonant-scanning STED microscope with ultrafast photon-counting acquisition. The STED microscope has two channels, using a pulsed laser and a continuous-wave (CW) laser as the depletion laser source, respectively. The CW STED channel preforms time-gated detection to enhance optical resolution in this channel. We use a resonant mirror to attain high scanning speed and ultrafast photon counting acquisition to scan a large field of view, which help reduce photobleaching. We discuss some practical issues in building a STED microscope, including creating a hollow depletion beam profile, manipulating polarization, and monitoring optical aberration. We also demonstrate a STED image enhancement method using stationary wavelet expansion and image analysis methods to register objects and to quantify colocalization in STED microscopy.


Asunto(s)
Aumento de la Imagen , Rayos Láser , Microscopía Fluorescente/instrumentación , Fotoblanqueo
9.
Front Physiol ; 6: 104, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25873902

RESUMEN

Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa) has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K(+) conductance (~300 pS), voltage-dependency and Ca(2+)-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with ß subunits. Notoriously, ß1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca(2+) preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain open. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

10.
Mol Cell Endocrinol ; 401: 202-12, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25451981

RESUMEN

Estrogen receptor α (ERα) mediates estrogen diverse actions on tissues. ERα gene has eight constitutively expressing exons and is known to have multiple isoforms generated by alternative initiation of transcription and splicing events including exon skipping. We have discovered two novel exons inserted between exon 5 and 6 of rat ERα that can add independently or in tandem 18 and 14 amino acids to the estrogen binding/activator function 2 domain of the receptor. Their transcript expression is three to six fold higher in heart compared to brain, aorta, liver, ovary and uterus. In heart, the new variants increased ~2 fold with animal growth from prenatal to adulthood, and had a minor increment in aged animals (28 months). Inclusion of these exons yields a receptor with practically no binding capacity for estrogen and reduced dimerization. The new variants show nuclear localization but are less efficient in binding to estrogen responsive elements (EREs) and failed to transcriptionally activate promoters containing EREs (mSlo, KCNE2). Thus, the new variants can regulate the wild-type receptor function and may contribute to the regulatory action of estrogen, especially in the maturing heart where they are more abundant.


Asunto(s)
Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/genética , Mutagénesis Insercional , Miocardio/metabolismo , Isoformas de ARN/genética , Activación Transcripcional , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Receptor alfa de Estrógeno/metabolismo , Exones , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Masculino , Especificidad de Órganos , Isoformas de ARN/metabolismo , Ratas , Ratas Sprague-Dawley
11.
J Microsc ; 257(1): 31-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25227160

RESUMEN

To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 µm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection.


Asunto(s)
Microscopía Confocal/métodos , Microscopía Confocal/normas , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Fotones , Diseño de Equipo , Aumento de la Imagen , Miocitos Cardíacos
12.
Nature ; 514(7524): 585-90, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25317562

RESUMEN

Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial-cell-like phenotype after acute ischaemic cardiac injury. Fibroblast-derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast-derived endothelial cells, reduces post-infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal-to-endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair.


Asunto(s)
Transdiferenciación Celular , Vasos Coronarios/citología , Vasos Coronarios/crecimiento & desarrollo , Células Endoteliales/citología , Mesodermo/citología , Isquemia Miocárdica/patología , Neovascularización Fisiológica , Animales , Femenino , Fibroblastos/citología , Técnicas In Vitro , Masculino , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
J Biol Chem ; 289(37): 25678-89, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25070892

RESUMEN

Angiotensin II (ANG-II) and BK channels play important roles in the regulation of blood pressure. In arterial smooth muscle, ANG-II inhibits BK channels, but the underlying molecular mechanisms are unknown. Here, we first investigated whether ANG-II utilizes its type 1 receptor (AT1R) to modulate BK activity. Pharmacological, biochemical, and molecular evidence supports a role for AT1R. In renal arterial myocytes, the AT1R antagonist losartan (10 µM) abolished the ANG-II (1 µM)-induced reduction of whole cell BK currents, and BK channels and ANG-II receptors were found to co-localize at the cell periphery. We also found that BK inhibition via ANG-II-activated AT1R was independent of G-protein activation (assessed with 500 µM GDPßS). In BK-expressing HEK293T cells, ANG-II (1 µM) also induced a reduction of BK currents, which was contingent on AT1R expression. The molecular mechanisms of AT1R and BK channel coupling were investigated in co-transfected cells. Co-immunoprecipitation showed formation of a macromolecular complex, and live immunolabeling demonstrated that both proteins co-localized at the plasma membrane with high proximity indexes as in arterial myocytes. Consistent with a close association, we discovered that the sole AT1R expression could decrease BK channel voltage sensitivity. Truncated BK proteins revealed that the voltage-sensing conduction cassette is sufficient for BK-AT1R association. Finally, C-terminal yellow and cyan fluorescent fusion proteins, AT1R-YFP and BK-CFP, displayed robust co-localized Förster resonance energy transfer, demonstrating intermolecular interactions at their C termini. Overall, our results strongly suggest that AT1R regulates BK channels through a close protein-protein interaction involving multiple BK regions and independent of G-protein activation.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Proteínas de Unión al GTP/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Angiotensina II/metabolismo , Animales , Señalización del Calcio , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes , Células HEK293 , Humanos , Losartán/administración & dosificación , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Técnicas de Placa-Clamp , Ratas , Arteria Renal/efectos de los fármacos , Arteria Renal/metabolismo
14.
Pflugers Arch ; 466(5): 875-86, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24077696

RESUMEN

The large-conductance Ca2+- and voltage-activated K+ (MaxiK, BK, BKCa, Slo1, KCa1.1) channel role in cell signalling is becoming apparent as we learn how the channel interacts with a multiplicity of proteins not only at the plasma membrane but also in intracellular organelles including the endoplasmic reticulum, nucleus, and mitochondria. In this review, we focus on the interactions of MaxiK channels with seven-transmembrane G protein-coupled receptors and discuss information suggesting that, the channel big C-terminus may act as the nucleus of signalling molecules including kinases relevant for cell death and survival. Increasing evidence indicates that the channel is able to associate with a variety of receptors including ß-adrenergic receptors, G protein-coupled estrogen receptors, acetylcholine receptors, thromboxane A2 receptors, and angiotensin II receptors, which highlights the varied functions that the channel has (or may have) not only in regulating contraction/relaxation of muscle cells or neurotransmission in the brain but also in cell metabolism, proliferation, migration, and gene expression. In line with this view, MaxiK channels have been implicated in obesity and in brain, prostate, and mammary cancers. A better understanding on the molecular mechanisms underlying or triggered by MaxiK channel abnormalities like overexpression in certain cancers may lead to new therapeutics to prevent devastating diseases.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Proteoma/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(26): 10836-41, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754429

RESUMEN

The large-conductance Ca(2+)- and voltage-activated K(+) channel (BK(Ca), MaxiK), which is encoded by the Kcnma1 gene, is generally expressed at the plasma membrane of excitable and nonexcitable cells. However, in adult cardiomyocytes, a BK(Ca)-like channel activity has been reported in the mitochondria but not at the plasma membrane. The putative opening of this channel with the BK(Ca) agonist, NS1619, protects the heart from ischemic insult. However, the molecular origin of mitochondrial BK(Ca) (mitoBK(Ca)) is unknown because its linkage to Kcnma1 has been questioned on biochemical and molecular grounds. Here, we unequivocally demonstrate that the molecular correlate of mitoBK(Ca) is the Kcnma1 gene, which produces a protein that migrates at ∼140 kDa and arranges in clusters of ∼50 nm in purified mitochondria. Physiological experiments further support the origin of mitoBK(Ca) as a Kcnma1 product because NS1619-mediated cardioprotection was absent in Kcnma1 knockout mice. Finally, BKCa transcript analysis and expression in adult cardiomyocytes led to the discovery of a 50-aa C-terminal splice insert as essential for the mitochondrial targeting of mitoBK(Ca).


Asunto(s)
Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/deficiencia , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/ultraestructura , Datos de Secuencia Molecular , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Aminoácido
17.
J Biol Chem ; 288(5): 3668-77, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23255603

RESUMEN

The large conductance voltage- and Ca(2+)-activated K(+) channel (MaxiK, BK(Ca), BK) is composed of four pore-forming α-subunits and can be associated with regulatory ß-subunits. One of the functional roles of MaxiK is to regulate vascular tone. We recently found that the MaxiK channel from coronary smooth muscle is trans-inhibited by activation of the vasoconstricting thromboxane A(2) prostanoid receptor (TP), a mechanism supported by MaxiK α-subunit (MaxiKα)-TP physical interaction. Here, we examined the role of the MaxiK ß1-subunit in TP-MaxiK association. We found that the ß1-subunit can by itself interact with TP and that this association can occur independently of MaxiKα. Subcellular localization analysis revealed that ß1 and TP are closely associated at the cell periphery. The molecular mechanism of ß1-TP interaction involves predominantly the ß1 extracellular loop. As reported previously, TP activation by the thromboxane A(2) analog U46619 caused inhibition of MaxiKα macroscopic conductance or fractional open probability (FP(o)) as a function of voltage. However, the positive shift of the FP(o) versus voltage curve by U46619 relative to the control was less prominent when ß1 was coexpressed with TP and MaxiKα proteins (20 ± 6 mV, n = 7) than in cells expressing TP and MaxiKα alone (51 ± 7 mV, n = 7). Finally, ß1 gene ablation reduced the EC(50) of the U46619 agonist in mediating aortic contraction from 18 ± 1 nm (n = 12) to 9 ± 1 nm (n = 12). The results indicate that the ß1-subunit can form a tripartite complex with TP and MaxiKα, has the ability to associate with each protein independently, and diminishes U46619-induced MaxiK channel trans-inhibition as well as vasoconstriction.


Asunto(s)
Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Tromboxano A2/farmacología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Vasoconstricción/efectos de los fármacos
18.
J Mol Cell Cardiol ; 53(4): 552-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22846883

RESUMEN

Despite the extensive knowledge of the functional unit of chromatin-the nucleosome-for which structural information exists at the atomic level, little is known about the endogenous structure of eukaryotic genomes. Chromosomal capture techniques and genome-wide chromatin immunoprecipitation and next generation sequencing have provided complementary insight into global features of chromatin structure, but these methods do not directly measure structural features of the genome in situ. This lack of insight is particularly troublesome in terminally differentiated cells which must reorganize their genomes for large scale gene expression changes in the absence of cell division. For example, cardiomyocytes, which are fully committed and reside in interphase, are capable of massive gene expression changes in response to physiological stimuli, but the global changes in chromatin structure that enable such transcriptional changes are unknown. The present study addressed this problem utilizing super-resolution stimulated emission depletion (STED) microscopy to directly measure chromatin features in mammalian cells. We demonstrate that immunolabeling of histone H3 coupled with STED imaging reveals chromatin domains on a scale of 40-70 nm, several folds better than the resolution of conventional confocal microscopy. An analytical workflow is established to detect changes in chromatin structure following acute stimuli and used to investigate rearrangements in cardiomyocyte genomes following agonists that induce cellular hypertrophy. This approach is readily adaptable to investigation of other nuclear features using a similar antibody-based labeling technique and enables direct measurements of chromatin domain changes in response to physiological stimuli.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/química , Cromatina/ultraestructura , Miocitos Cardíacos/ultraestructura , Animales , Núcleo Celular , Células Cultivadas , Expresión Génica , Histonas/análisis , Histonas/inmunología , Inmunohistoquímica , Microscopía , Miocitos Cardíacos/metabolismo , Estructura Terciaria de Proteína , Ratas
19.
J Physiol ; 590(23): 5937-47, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22930268

RESUMEN

The large conductance calcium- and voltage-activated potassium channel (BK(Ca)) is widely expressed at the plasma membrane. This channel is involved in a variety of fundamental cellular functions including excitability, smooth muscle contractility, and Ca(2+) homeostasis, as well as in pathological situations like proinflammatory responses in rheumatoid arthritis, and cancer cell proliferation. Immunochemical, biochemical and pharmacological studies from over a decade have intermittently shown the presence of BK(Ca) in intracellular organelles. To date, intracellular BK(Ca) (iBK(Ca)) has been localized in the mitochondria, endoplasmic reticulum, nucleus and Golgi apparatus but its functional role remains largely unknown except for the mitochondrial BK(Ca) whose opening is thought to play a role in protecting the heart from ischaemic injury. In the nucleus, pharmacology suggests a role in regulating nuclear Ca(2+), membrane potential and eNOS expression. Establishing the molecular correlates of iBK(Ca), the mechanisms defining iBK(Ca) organelle-specific targeting, and their modulation are challenging questions. This review summarizes iBK(Ca) channels, their possible functions, and efforts to identify their molecular correlates.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Animales , Humanos , Orgánulos/fisiología
20.
Circ Res ; 111(5): 516-20, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22811557

RESUMEN

RATIONALE: Mutations of the orphan transporter ABCC6 (ATP-binding cassette, subfamily C, member 6) cause the connective tissue disorder pseudoxanthoma elasticum. ABCC6 was thought to be located on the plasma membrane of liver and kidney cells. OBJECTIVE: Mouse systems genetics and bioinformatics suggested that ABCC6 deficiency affects mitochondrial gene expression. We therefore tested whether ABCC6 associates with mitochondria. METHODS AND RESULTS: We found ABCC6 in crude mitochondrial fractions and subsequently pinpointed its localization to the purified mitochondria-associated membrane fraction. Cell-surface biotinylation in hepatocytes confirmed that ABCC6 is intracellular. Abcc6-knockout mice demonstrated mitochondrial abnormalities and decreased respiration reserve capacity. CONCLUSIONS: Our finding that ABCC6 localizes to the mitochondria-associated membrane has implications for its mechanism of action in normal and diseased states.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Calcinosis/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Seudoxantoma Elástico/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Biotinilación , Calcinosis/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Fraccionamiento Celular , Respiración de la Célula/fisiología , Regulación de la Expresión Génica/fisiología , Genes Mitocondriales/fisiología , Hepatocitos/citología , Hepatocitos/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Seudoxantoma Elástico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...