Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 22: 377-387, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514029

RESUMEN

With the US Food and Drug Administration (FDA) approval of four CD19- and one BCMA-targeted chimeric antigen receptor (CAR) therapy for B cell malignancies, CAR T cell therapy has finally reached the status of a medicinal product. The successful manufacturing of autologous CAR T cell products is a key requirement for this promising treatment modality. By analyzing the composition of 214 apheresis products from 210 subjects across eight disease indications, we found that high CD14+ cell content poses a challenge for manufacturing CAR T cells, especially in patients with non-Hodgkin's lymphoma and multiple myeloma caused by the non-specific phagocytosis of the magnetic beads used to activate CD3+ T cells. We demonstrated that monocyte depletion via rapid plastic surface adhesion significantly reduces the CD14+ monocyte content in the apheresis products and simultaneously boosts the CD3+ content. We established a 40% CD14+ threshold for the stratification of apheresis products across nine clinical trials and demonstrated the effectiveness of this procedure by comparing manufacturing runs in two phase 1 clinical trials. Our study suggests that CD14+ content should be monitored in apheresis products, and that the manufacturing of CAR T cells should incorporate a step that lessens the CD14+ cell content in apheresis products containing more than 40% to maximize the production success.

2.
Sci Transl Med ; 6(224): 224ra25, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553386

RESUMEN

We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome-positive (Ph(+)) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy.


Asunto(s)
Trasplante de Células , Inmunoterapia , Leucemia de Células B/terapia , Linfocitos T/inmunología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Sci Transl Med ; 5(177): 177ra38, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23515080

RESUMEN

Adults with relapsed B cell acute lymphoblastic leukemia (B-ALL) have a dismal prognosis. Only those patients able to achieve a second remission with no minimal residual disease (MRD) have a hope for long-term survival in the context of a subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have treated five relapsed B-ALL subjects with autologous T cells expressing a CD19-specific CD28/CD3ζ second-generation dual-signaling chimeric antigen receptor (CAR) termed 19-28z. All patients with persistent morphological disease or MRD(+) disease upon T cell infusion demonstrated rapid tumor eradication and achieved MRD(-) complete remissions as assessed by deep sequencing polymerase chain reaction. Therapy was well tolerated, although significant cytokine elevations, specifically observed in those patients with morphologic evidence of disease at the time of treatment, required lymphotoxic steroid therapy to ameliorate cytokine-mediated toxicities. Indeed, cytokine elevations directly correlated to tumor burden at the time of CAR-modified T cell infusions. Tumor cells from one patient with relapsed disease after CAR-modified T cell therapy, who was ineligible for additional allo-HSCT or T cell therapy, exhibited persistent expression of CD19 and sensitivity to autologous 19-28z T cell-mediated cytotoxicity, which suggests potential clinical benefit of additional CAR-modified T cell infusions. These results demonstrate the marked antitumor efficacy of 19-28z CAR-modified T cells in patients with relapsed/refractory B-ALL and the reliability of this therapy to induce profound molecular remissions, forming a highly effective bridge to potentially curative therapy with subsequent allo-HSCT.


Asunto(s)
Antígenos CD19/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfocitos T/metabolismo , Linfocitos T/fisiología , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Inmunoterapia/métodos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
4.
Blood ; 118(18): 4817-28, 2011 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21849486

RESUMEN

We report the findings from the first 10 patients with chemotherapy-refractory chronic lymphocytic leukemia (CLL) or relapsed B-cell acute lymphoblastic leukemia (ALL) we have enrolled for treatment with autologous T cells modified to express 19-28z, a second-generation chimeric antigen (Ag) receptor specific to the B-cell lineage Ag CD19. Eight of the 9 treated patients tolerated 19-28z(+) T-cell infusions well. Three of 4 evaluable patients with bulky CLL who received prior conditioning with cyclophosphamide exhibited either a significant reduction or a mixed response in lymphadenopathy without concomitant development of B-cell aplasia. In contrast, one patient with relapsed ALL who was treated in remission with a similar T-cell dose developed a predicted B-cell aplasia. The short-term persistence of infused T cells was enhanced by prior cyclophosphamide administration and inversely proportional to the peripheral blood tumor burden. Further analyses showed rapid trafficking of modified T cells to tumor and retained ex vivo cytotoxic potential of CD19-targeted T cells retrieved 8 days after infusion. We conclude that this adoptive T-cell approach is promising and more likely to show clinical benefit in the setting of prior conditioning chemotherapy and low tumor burden or minimal residual disease. These studies are registered at www.clinicaltrials.org as #NCT00466531 (CLL protocol) and #NCT01044069 (B-ALL protocol).


Asunto(s)
Antígenos CD19/inmunología , Supervivencia de Injerto , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Leucemia de Células B/terapia , Linfocitos T/trasplante , Adulto , Anciano , Antígenos CD19/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos/fisiología , Femenino , Supervivencia de Injerto/fisiología , Humanos , Leucemia de Células B/tratamiento farmacológico , Leucemia de Células B/inmunología , Masculino , Persona de Mediana Edad , Recurrencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/fisiología , Trasplante Autólogo , Insuficiencia del Tratamiento
5.
J Immunother ; 32(2): 169-80, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19238016

RESUMEN

On the basis of promising preclinical data demonstrating the eradication of systemic B-cell malignancies by CD19-targeted T lymphocytes in vivo in severe combined immunodeficient-beige mouse models, we are launching phase I clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia. We present here the validation of the bioprocess which we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semiclosed culture system using the Wave Bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in severe combined immunodeficient-beige mice bearing disseminated tumors. The validation requirements in terms of T-cell expansion, T-cell transduction with the 1928z CAR, biologic activity, quality control testing, and release criteria were met for all 4 validation runs using apheresis products from patients with CLL. Additionally, after expansion of the T cells, the diversity of the skewed Vbeta T-cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemorefractory CLL and in patients with relapsed acute lymphoblastic leukemia. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any CAR or T-cell receptor.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva , Leucemia Linfocítica Crónica de Células B/terapia , Receptores de Antígenos/genética , Linfocitos T Citotóxicos/inmunología , Animales , Reactores Biológicos , Técnicas de Cultivo de Célula , Ensayos Clínicos como Asunto , Ingeniería Genética , Humanos , Leucemia Linfocítica Crónica de Células B/inmunología , Ratones , Receptores de Antígenos/inmunología , Linfocitos T Citotóxicos/trasplante , Transducción Genética
6.
Hum Gene Ther ; 18(12): 1253-60, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18052719

RESUMEN

The ability to genetically modify human T cells to target tumor antigens through retroviral gene transfer constitutes a potentially powerful approach to cancer immunotherapy. However, low transduction efficiencies may hamper the efficacy of such therapeutic strategies in the clinical setting. Most commonly, gammaretroviral gene transfer into T cells is conducted through spinoculation, that is, centrifugation of retroviral particles and T cells on RetroNectin-coated non-tissue culture vessels. Here we present data investigating the impact of temperature, speed, and frequency of spinoculation on T cell transduction efficiencies. We found that all three variables independently impacted gene transfer, with increasing temperature, speed, and frequency of spinoculation all enhancing the transduction of T cells. These improved conditions were additive, with the greatest proportion of transduced T cells being generated at the highest tested temperature and speed, after daily spinoculation for 2 to 3 days. Under these conditions, enhanced gene transfer was observed in T cells derived from healthy donors, using research-grade vector stocks. Whereas both RetroNectin and spinoculation were critical to optimal gene transduction, preloading of gammaretroviral particles before spinoculation did not enhance gene transfer. Significantly, application of these enhanced transduction conditions to T cells derived from previously treated patients with chronic lymphocytic leukemia allowed for adequate gene transfer under both small-scale and large-scale clinically applicable conditions using either preclinical or current Good Manufacturing Practice-grade gammaretroviral vector stocks.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Retroviridae/genética , Linfocitos T , Transducción Genética/métodos , Centrifugación , Humanos , Temperatura
7.
Cancer Res ; 65(19): 9080-8, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16204083

RESUMEN

The genetic transfer of antigen receptors is a powerful approach to rapidly generate tumor-specific T lymphocytes. Unlike the physiologic T-cell receptor, chimeric antigen receptors (CARs) encompass immunoglobulin variable regions or receptor ligands as their antigen recognition moiety, thus permitting T cells to recognize tumor antigens in the absence of human leukocyte antigen expression. CARs encompassing the CD3zeta chain as their activating domain induce T-cell proliferation in vitro, but limited survival. The requirements for genetically targeted T cells to function in vivo are less well understood. We have, therefore, established animal models to assess the therapeutic efficacy of human peripheral blood T lymphocytes targeted to prostate-specific membrane antigen (PSMA), an antigen expressed in prostate cancer cells and the neovasculature of various solid tumors. In vivo specificity and antitumor activity were assessed in mice bearing established prostate adenocarcinomas, using serum prostate-secreted antigen, magnetic resonance, computed tomography, and bioluminescence imaging to investigate the response to therapy. In three tumor models, orthotopic, s.c., and pulmonary, we show that PSMA-targeted T cells effectively eliminate prostate cancer. Tumor eradication was directly proportional to the in vivo effector-to-tumor cell ratio. Serial imaging further reveals that the T cells must survive for at least 1 week to induce durable remissions. The eradication of xenogeneic tumors in a murine environment shows that the adoptively transferred T cells do not absolutely require in vivo costimulation to function. These results thus provide a strong rationale for undertaking phase I clinical studies to assess PSMA-targeted T cells in patients with metastatic prostate cancer.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Linfocitos T/inmunología , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Línea Celular Tumoral , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Glutamato Carboxipeptidasa II/genética , Glutamato Carboxipeptidasa II/inmunología , Humanos , Memoria Inmunológica/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Activación de Linfocitos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones SCID , Células 3T3 NIH , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...