Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Nat Commun ; 15(1): 3576, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678040

Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.


Cryoelectron Microscopy , Maltose-Binding Proteins , Nucleocapsid , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Maltose-Binding Proteins/metabolism , Maltose-Binding Proteins/genetics , Virus Assembly , Capsid/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Chem Rev ; 122(9): 9145-9197, 2022 05 11.
Article En | MEDLINE | ID: mdl-35394752

Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.


Capsid , Materials Science , Capsid/chemistry , Capsid Proteins/chemistry , Catalysis , Protein Engineering
3.
Science ; 372(6547): 1220-1224, 2021 06 11.
Article En | MEDLINE | ID: mdl-34112695

Viruses are ubiquitous pathogens of global impact. Prompted by the hypothesis that their earliest progenitors recruited host proteins for virion formation, we have used stringent laboratory evolution to convert a bacterial enzyme that lacks affinity for nucleic acids into an artificial nucleocapsid that efficiently packages and protects multiple copies of its own encoding messenger RNA. Revealing remarkable convergence on the molecular hallmarks of natural viruses, the accompanying changes reorganized the protein building blocks into an interlaced 240-subunit icosahedral capsid that is impermeable to nucleases, and emergence of a robust RNA stem-loop packaging cassette ensured high encapsidation yields and specificity. In addition to evincing a plausible evolutionary pathway for primordial viruses, these findings highlight practical strategies for developing nonviral carriers for diverse vaccine and delivery applications.


Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Capsid/metabolism , Directed Molecular Evolution , RNA, Messenger/metabolism , Amino Acid Substitution , Aquifex/enzymology , Bacterial Proteins/chemistry , Capsid/chemistry , Cryoelectron Microscopy , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Nucleocapsid/chemistry , Nucleocapsid/genetics , Nucleocapsid/metabolism , Protein Domains , Protein Structure, Secondary , Protein Subunits , RNA, Messenger/chemistry , RNA, Messenger/genetics , Ribonucleases/metabolism
4.
Methods Enzymol ; 641: 477-505, 2020.
Article En | MEDLINE | ID: mdl-32713536

Fluorescence correlation spectroscopy (FCS) is a quantitative single-molecule method that measures the concentration and rate of diffusion of fluorophore-tagged molecules, both large and small, in vitro and within live cells, and even within discrete cellular compartments. FCS is exceptionally well-suited to directly quantify the efficiency of intracellular protein delivery-specifically, how well different "cell-penetrating" proteins and peptides guide proteinaceous materials into the cytosol and nuclei of live mammalian cells. This article provides an overview of the procedures necessary to execute robust FCS experiments and evaluate endosomal escape efficiencies: preparation of fluorophore-tagged proteins, incubation with mammalian cells and preparation of FCS samples, setup and execution of an FCS experiment, and a detailed discussion of and custom MATLAB® script for analyzing the resulting autocorrelation curves in the context of appropriate diffusion models.


Peptides , Proteins , Animals , Diffusion , Fluorescent Dyes , Spectrometry, Fluorescence
5.
Proc Natl Acad Sci U S A ; 116(2): 512-521, 2019 01 08.
Article En | MEDLINE | ID: mdl-30610181

Protein therapeutics represent a significant and growing component of the modern pharmacopeia, but their potential to treat human disease is limited because most proteins fail to traffic across biological membranes. Recently, we discovered a class of cell-permeant miniature proteins (CPMPs) containing a precisely defined, penta-arginine (penta-Arg) motif that traffics readily to the cytosol and nucleus of mammalian cells with efficiencies that rival those of hydrocarbon-stapled peptides active in animals and man. Like many cell-penetrating peptides (CPPs), CPMPs enter the endocytic pathway; the difference is that CPMPs containing a penta-Arg motif are released efficiently from endosomes, while other CPPs are not. Here, we seek to understand how CPMPs traffic from endosomes into the cytosol and what factors contribute to the efficiency of endosomal release. First, using two complementary cell-based assays, we exclude endosomal rupture as the primary means of endosomal escape. Next, using an RNA interference screen, fluorescence correlation spectroscopy, and confocal imaging, we identify VPS39-a gene encoding a subunit of the homotypic fusion and protein-sorting (HOPS) complex-as a critical determinant in the trafficking of CPMPs and hydrocarbon-stapled peptides to the cytosol. Although CPMPs neither inhibit nor activate HOPS function, HOPS activity is essential to efficiently deliver CPMPs to the cytosol. CPMPs localize within the lumen of Rab7+ and Lamp1+ endosomes and their transport requires HOPS activity. Overall, our results identify Lamp1+ late endosomes and lysosomes as portals for passing proteins into the cytosol and suggest that this environment is prerequisite for endosomal escape.


Carrier Proteins/genetics , Cell-Penetrating Peptides , Endosomes/metabolism , Membrane Fusion/drug effects , Amino Acid Motifs , Autophagy-Related Proteins , Carrier Proteins/metabolism , Cell Line, Tumor , Cell-Penetrating Peptides/pharmacokinetics , Cell-Penetrating Peptides/pharmacology , Cytosol/metabolism , Endosomes/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Protein Transport/drug effects , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
6.
ACS Cent Sci ; 4(10): 1379-1393, 2018 Oct 24.
Article En | MEDLINE | ID: mdl-30410976

New methods for delivering proteins into the cytosol of mammalian cells are being reported at a rapid pace. Differentiating between these methods in a quantitative manner is difficult, however, as most assays for evaluating cytosolic protein delivery are qualitative and indirect and thus often misleading. Here we make use of fluorescence correlation spectroscopy (FCS) to determine with precision and accuracy the relative efficiencies with which seven different previously reported "cell-penetrating peptides" (CPPs) transport a model protein cargo-the self-labeling enzyme SNAP-tag-beyond endosomal membranes and into the cytosol. Using FCS, we discovered that the miniature protein ZF5.3 is an exceptional vehicle for delivering SNAP-tag to the cytosol. When delivered by ZF5.3, SNAP-tag can achieve a cytosolic concentration as high as 250 nM, generally at least 2-fold and as much as 6-fold higher than any other CPP evaluated. Additionally, we show that ZF5.3 can be fused to a second enzyme cargo-the engineered peroxidase APEX2-and reliably delivers the active enzyme to the cell interior. As FCS allows one to realistically assess the relative merits of protein transduction domains, we anticipate that it will greatly accelerate the identification, evaluation, and optimization of strategies to deliver large, intact proteins to intracellular locales.

7.
Nat Chem ; 10(6): 644-652, 2018 06.
Article En | MEDLINE | ID: mdl-29713033

Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.


Peptides/chemistry , Phenols/chemistry , Small Molecule Libraries/chemistry , Amino Acids/chemistry , Calcium Hydroxide/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Chromatography, High Pressure Liquid , Glycosylation , Proton Magnetic Resonance Spectroscopy , Solvents/chemistry , Tandem Mass Spectrometry , Water/chemistry
8.
J Am Chem Soc ; 137(44): 14084-93, 2015 Nov 11.
Article En | MEDLINE | ID: mdl-26465072

The inefficient delivery of proteins into mammalian cells remains a major barrier to realizing the therapeutic potential of many proteins. We and others have previously shown that superpositively charged proteins are efficiently endocytosed and can bring associated proteins and nucleic acids into cells. The vast majority of cargo delivered in this manner, however, remains in endosomes and does not reach the cytosol. In this study we designed and implemented a screen to discover peptides that enhance the endosomal escape of proteins fused to superpositively charged GFP (+36 GFP). From a screen of peptides previously reported to disrupt microbial membranes without known mammalian cell toxicity, we discovered a 13-residue peptide, aurein 1.2, that substantially increases cytosolic protein delivery by up to ∼5-fold in a cytosolic fractionation assay in cultured cells. Four additional independent assays for nonendosomal protein delivery collectively suggest that aurein 1.2 enhances endosomal escape of associated endocytosed protein cargo. Structure-function studies clarified peptide sequence and protein conjugation requirements for endosomal escape activity. When applied to the in vivo delivery of +36 GFP-Cre recombinase fusions into the inner ear of live mice, fusion with aurein 1.2 dramatically increased nonendosomal Cre recombinase delivery potency, resulting in up to 100% recombined inner hair cells and 96% recombined outer hair cells, compared to 0-4% recombined hair cells from +36-GFP-Cre without aurein 1.2. Collectively, these findings describe a genetically encodable, endosome escape-enhancing peptide that can substantially increase the cytoplasmic delivery of cationic proteins in vitro and in vivo.


Antimicrobial Cationic Peptides/metabolism , Drug Delivery Systems , Ear, Inner/cytology , Endosomes/metabolism , Green Fluorescent Proteins/metabolism , Integrases/metabolism , Animals , Antimicrobial Cationic Peptides/chemistry , Cells, Cultured , Cytoplasm/metabolism , Ear, Inner/metabolism , Endosomes/chemistry , Mice
9.
J Am Chem Soc ; 137(7): 2536-2541, 2015 Feb 25.
Article En | MEDLINE | ID: mdl-25679876

We used fluorescence correlation spectroscopy (FCS) to accurately and precisely determine the relative efficiencies with which three families of "cell-penetrating peptides" traffic to the cytosol of mammalian cells. We find that certain molecules containing a "penta-arg" motif reach the cytosol, intact, with efficiencies greater than 50%. This value is at least 10-fold higher than that observed for the widely studied cationic sequence derived from HIV Tat or polyarginine Arg8, and equals that of hydrocarbon-stapled peptides that are active in cells and animals. Moreover, we show that the efficiency with which stapled peptides reach the cytosol, as determined by FCS, correlates directly with their efficacy in cell-based assays. We expect that these findings and the associated technology will aid the design of peptides, proteins, and peptide mimetics that predictably and efficiently reach the interior of mammalian cells.


Cytosol/metabolism , Peptides/chemistry , Peptides/metabolism , Proteins/chemistry , Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , HeLa Cells , Humans , Models, Molecular , Molecular Sequence Data , Protein Transport , Spectrometry, Fluorescence
...