Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Beilstein J Org Chem ; 20: 41-51, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38230356

RESUMEN

The reactions of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol and various Michael acceptors (acrylonitrile, acrylamide, methyl vinyl ketone, several acrylates, methyl vinyl sulfone) yield the respective phosphonium phenolate zwitterions at room temperature. Nine different zwitterions were synthesized and fully characterized. Zwitterions with the poor Michael acceptors methyl methacrylate and methyl crotonate formed, but could not be isolated in pure form. The solid-state structures of two phosphonium phenolate molecules were determined by single-crystal X-ray crystallography. The bonding situation in the solid state together with NMR data suggests an important contribution of an ylidic resonance structure in these molecules. The phosphonium phenolates are characterized by UV-vis absorptions peaking around 360 nm and exhibit a negative solvatochromism. An analysis of the kinetics of the zwitterion formation was performed for three Michael acceptors (acrylonitrile, methyl acrylate, and acrylamide) in two different solvents (chloroform and methanol). The results revealed the proton transfer step necessary to stabilize the initially formed carbanion as the rate-determining step. A preorganization of the carbonyl bearing Michael acceptors allowed for reasonable fast direct proton transfer from the phenol in aprotic solvents. In contrast, acrylonitrile, not capable of forming a similar preorganization, is hardly reactive in chloroform solution, while in methanol the corresponding phosphonium phenolate is formed.

2.
Waste Manag ; 149: 21-32, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35700660

RESUMEN

The disposal of municipal solid waste (MSW) in landfills is the prevalent method of waste management at the global scale. However, the production of landfill gases due to the methanogenic fermentation of wet MSW is a possible threat to human health and accounts for a substantial contribution to the global greenhouse gas emissions. Accordingly, information regarding water content is critical as it is an important factor triggering methane production in MSW landfills. In this study, we propose a petrophysical joint inversion scheme to quantitatively solve for the water content (WC) in landfills based on seismic refraction as well as electrical resistivity data collected at two different frequencies. In this way, we also take into account the contribution of the surface conductivity to the observed electrical response, which is crucial for a reliable quantification of the WC. Our results reveal a high water content within the MSW unit (WC > 20%) for areas characterized by a strong polarization response (normalized chargeability > 5 Mn mS/m). Such areas can be related to an increased biogeochemical activity as evidenced by the detected methane production. We observe consistent estimates between the water content resolved through the proposed joint inversion scheme and values measured in waste samples with a median percentage error of 17%. Our study demonstrates the possibility to obtain reliable estimates for the WC in MSW landfills through the petrophysical joint inversion of seismic and electrical data when surface conductivity is explicitly considered.


Asunto(s)
Eliminación de Residuos , Humanos , Metano , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos , Agua
3.
Inorg Chem ; 61(14): 5539-5546, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35343681

RESUMEN

Mono- (H3LSm) and disamarium complexes (LSm2) were prepared by reaction of the azacryptand N[(CH2)2NHCH2-p-C6H4CH2NH(CH2)2]3N (H6L) with 1 or 2 equiv of Sm[N(SiMe3)2]3, respectively. The disamarium complex features free coordination sites on both metal centers available for bridging ligands shielded by phenylenes from tetrahydrofuran (THF) coordination. The reaction of LSm2 with KCN and 18-crown-6 yielded the adduct [LSm2-µ-η1:η1-CN][K(18-crown-6)(THF)2] featuring a bridging cyanide. The complexes were characterized by crystallography, electrochemical analysis, NMR, and optical spectroscopy, and the effective magnetic moments were determined via the Evans method.

4.
Dalton Trans ; 51(5): 1819-1828, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34988574

RESUMEN

The phosphinoindenyl rare-earth metal complexes [1-(Ph2P)-η5-C9H6]2LnIIIN(SiMe3)2, Ln = La (1-La), Sm (1-Sm), were prepared by heating two equivalents of 1-(Ph2P)C9H7 with LnIII[N(SiMe3)2]3 in toluene at 100 °C. The treatment of 1-La with one equivalent of benzonitrile gave (PhCN)[1-(Ph2P)-η5-C9H6]2LaIIIN(SiMe3)2, 2, while no adduct was formed in case of the samarium derivative 1-Sm. The reaction of 1-La and 1-Sm with two equivalents of benzyl azide yielded the (phosphazido)indenyl complexes {1-[BnN3-κN(Ph2)P]-η5-C9H6}{1-[BnN3-κ2N,N'(Ph2)P]C9H6}LnIIIN(SiMe3)2, Ln = La (3-La), Sm (3-Sm), respectively. The five complexes catalyse the intramolecular hydroamination/cyclisation of 2,2-diphenylpent-4-ene-1-amine using 2% catalyst loading. All compounds were characterised by NMR and UV-Vis spectroscopy, single-crystal X-ray diffraction, and elemental analysis and DFT calculations were performed for 3-La.

5.
Nat Commun ; 8(1): 1200, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089501

RESUMEN

Implementing nonlinear interactions between single photons and single atoms is at the forefront of optical physics. Motivated by the prospects of deterministic all-optical quantum logic, many efforts are currently underway to find suitable experimental techniques. Focusing the incident photons onto the atom with a lens yielded promising results, but is limited by diffraction to moderate interaction strengths. However, techniques to exceed the diffraction limit are known from high-resolution imaging. Here we adapt a super-resolution imaging technique, 4Pi microscopy, to efficiently couple light to a single atom. We observe 36.6(3)% extinction of the incident field, and a modified photon statistics of the transmitted field-indicating nonlinear interaction at the single-photon level. Our results pave the way to few-photon nonlinear optics with individual atoms in free space.

6.
Opt Express ; 25(6): 6294-6301, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28380982

RESUMEN

We investigate the scattering of single photons by single atoms and, in particular, the dependence of the atomic dynamics and the scattering probability on the photon bandwidth. We tightly focus the incident photons onto a single trapped 87Rb atom and use the time-resolved transmission to characterize the interaction strength. Decreasing the bandwidth of the single photons from 6 to 2 times the atomic linewidth, we observe an increase in atomic peak excitation and photon scattering probability.

7.
Nat Commun ; 7: 13716, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27897173

RESUMEN

Scattering of light by matter has been studied extensively in the past. Yet, the most fundamental process, the scattering of a single photon by a single atom, is largely unexplored. One prominent prediction of quantum optics is the deterministic absorption of a travelling photon by a single atom, provided the photon waveform matches spatially and temporally the time-reversed version of a spontaneously emitted photon. Here we experimentally address this prediction and investigate the influence of the photon's temporal profile on the scattering dynamics using a single trapped atom and heralded single photons. In a time-resolved measurement of atomic excitation we find a 56(11)% increase of the peak excitation by photons with an exponentially rising profile compared with a decaying one. However, the overall scattering probability remains unchanged within the experimental uncertainties. Our results demonstrate that envelope tailoring of single photons enables precise control of the photon-atom interaction.

8.
Phys Rev Lett ; 110(4): 043003, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25166162

RESUMEN

We present the realization of a combined trapped-ion and optical cavity system, in which a single Yb(+) ion is confined by a micron-scale ion trap inside a 230 µm-long optical fiber cavity. We characterize the spatial ion-cavity coupling and measure the ion-cavity coupling strength using a cavity-stimulated Λ transition. Owing to the small mode volume of the fiber resonator, the coherent coupling strength between the ion and a single photon exceeds the natural decay rate of the dipole moment. This system can be integrated into ion-photon quantum networks and is a step towards cavity quantum electrodynamics based quantum information processing with trapped ions.


Asunto(s)
Tecnología de Fibra Óptica/métodos , Teoría Cuántica , Iterbio/química , Iones/química , Fotones
9.
Science ; 329(5991): 542-4, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20595582

RESUMEN

Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection of a spin of single atoms and molecules, multiple repetitions of the experiment that are usually required for achieving a detectable signal obscure the intrinsic quantum nature of the spin's behavior. We demonstrated single-shot, projective measurement of a single nuclear spin in diamond using a quantum nondemolition measurement scheme, which allows real-time observation of an individual nuclear spin's state in a room-temperature solid. Such an ideal measurement is crucial for realization of, for example, quantum error correction protocols in a quantum register.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...