Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Article En | MEDLINE | ID: mdl-35884224

Background: Antibiotics delivered from implanted bone substitute materials (BSM) can potentially be used to prevent acute infections and biofilm formation, providing high concentrations of antibiotics at the surgical site without systemic toxicity. In addition, BSM should allow osteoconductivity supporting bone healing without further surgery. Promising results have been achieved using lyophilized bone allografts mixed with antibiotics. Methods: In this study specially prepared human bone allografts were evaluated as an antibiotic carrier in vitro and in vivo. The efficacy of different antibiotic-impregnated bone allografts was measured by drug release tests in vitro and in vivo and bacterial susceptibility tests using four bacterial species usually responsible for implant-associated infections. Results: The loading procedures of allograft bone substitutes with antibiotics were successful. Some of the antibiotic concentrations exceeded the MIC90 for up to 7 days in vitro and for up to 72 h in vivo. The susceptibility tests showed that S. epidermidis ATCC 12228 was the most susceptible bacterial species in comparison to the other strains tested for all antibiotic substances. Vancomycin and rifampicin showed the best results against standard and patient-isolated strains in vitro. In vivo, new bone formation was comparable in all study groups including the control group without antibiotic loading. Conclusions: Human bone allografts showed the capacity to act as customized loaded antibiotic carriers to prevent acute infections and should be considered in the management of bone infections in combination with systemic antimicrobial therapy.

2.
Antibiotics (Basel) ; 10(8)2021 Jul 22.
Article En | MEDLINE | ID: mdl-34438941

Background: N-chlorotaurine (NCT), an antiseptic that originates from the human defense system, has broad-spectrum microbicidal activity and is well tolerated by human tissue and applicable to sensitive body regions. Bacteria in short-term biofilms, too, have been shown to be killed by NCT. It was the aim of the present study to demonstrate the activity of NCT against bacteria and yeasts in longer-lasting biofilms, including their co-culture. Materials and methods: Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella variicola biofilms were grown for 14 weeks in MBECTM inoculator with 96 well base. Some pegs were pinched off weekly and incubated in 1% NCT in PBS (PBS only for controls) at pH 7.1 and 37 °C, for 30 and 60 min. Subsequently, bacteria were resuspended by ultrasonication and subjected to quantitative cultures. Similar tests were conducted with C. albicans biofilms grown on metal (A2-steel) discs for 4 weeks. Mixed co-cultures of C. albicans plus each of the three bacterial strains on metal discs were grown for 5-7 weeks and weekly evaluated, as mentioned above. Results: Single biofilms of S. aureus, P. aeruginosa, and K. variicola grew to approximately 1 × 106 colony forming units (CFU)/mL and C. albicans to 1 × 105 CFU/mL. In combined biofilms, the CFU count was about 1 log10 lower. Viable counts of biofilms of single bacteria were reduced by 2.8 to 5.6 log10 in 1% NCT after 60 min (0.9 to 4.7 log10 after 30 min) with Gram-negative bacteria being more susceptible than S. aureus. Significant reduction of C. albicans by 2.0 to 2.9 log10 occurred after 4 h incubation. In combined biofilms, viable counts of C. albicans were reduced by 1.1 to 2.4 log10 after 4 h, while they reached the detection limit after 1 to 2 h with bacteria (2.0 to > 3.5 log10 reduction). Remarkably, older biofilms demonstrated no increase in resistance but constant susceptibility to NCT. This was valid for all tested pathogens. In electron microscopy, morphological differences between NCT-treated and non-treated biofilms could be found. Conclusions: NCT is active against long-term biofilms of up to several months irrespective of their age. Combined biofilm cultures of yeasts and bacteria show a similar susceptibility pattern to NCT as single ones. These results contribute to the explanation of the clinical efficacy of NCT, for instance, in infected chronic wounds and purulently coated crural ulcerations.

...