Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Commun Biol ; 6(1): 161, 2023 02 09.
Article En | MEDLINE | ID: mdl-36759717

Fibrotic changes in the myocardium and cardiac arrhythmias represent fatal complications in systemic sclerosis (SSc), however the underlying mechanisms remain elusive. Mice overexpressing transcription factor Fosl-2 (Fosl-2tg) represent animal model of SSc. Fosl-2tg mice showed interstitial cardiac fibrosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks and reduced HR variability. Following stimulation with isoproterenol Fosl-2tg mice showed impaired HR response. In contrast to Fosl-2tg, immunodeficient Rag2-/-Fosl-2tg mice were protected from enhanced myocardial fibrosis and ECG abnormalities. Transcriptomics analysis demonstrated that Fosl-2-overexpression was responsible for profibrotic signature of cardiac fibroblasts, whereas inflammatory component in Fosl-2tg mice activated their fibrotic and arrhythmogenic phenotype. In human cardiac fibroblasts FOSL-2-overexpression enhanced myofibroblast signature under proinflammatory or profibrotic stimuli. These results demonstrate that under immunofibrotic conditions transcription factor Fosl-2 exaggerates myocardial fibrosis, arrhythmias and aberrant response to stress.


Cardiomyopathies , Transcription Factor AP-1 , Animals , Humans , Mice , Arrhythmias, Cardiac/genetics , Fibrosis , Mice, Transgenic
3.
Arthritis Rheumatol ; 73(9): 1720-1730, 2021 09.
Article En | MEDLINE | ID: mdl-33760395

OBJECTIVE: Systemic sclerosis (SSc) is characterized by dysregulation of type I interferon (IFN) signaling. CD52 is known for its immunosuppressive functions in T cells. This study was undertaken to investigate the role of CD52 in monocyte adhesion and type I IFN signaling in patients with SSc. METHODS: Transcriptome profiles of circulating CD14+ monocytes from patients with limited cutaneous SSc (lcSSc), patients with diffuse cutaneous SSc (dcSSs), and healthy controls were analyzed by RNA sequencing. Levels of CD52, CD11b/integrin αΜ, and CD18/integrin ß2 in whole blood were assessed by flow cytometry. CD52 expression was analyzed in relation to disease phenotype (early, lcSSc, dcSSc) and autoantibody profiles. The impact of overexpression, knockdown, and antibody blocking of CD52 was analyzed by gene and protein expression assays and functional assays. RESULTS: Pathway enrichment analysis indicated an increase in adhesion- and type I IFN-related genes in monocytes from SSc patients. These cells displayed up-regulated expression of CD11b/CD18, reduced expression of CD52, and enhanced adhesion to intercellular adhesion molecule 1 and endothelial cells. Changes in CD52 expression were consistent with the SSc subtypes, as well as with immunosuppressive treatments, autoantibody profiles, and monocyte adhesion properties in patients with SSc. Overexpression of CD52 led to decreased levels of CD18 and monocyte adhesion, while knockdown of CD52 increased monocyte adhesion. Experiments with the humanized anti-CD52 monoclonal antibody alemtuzumab in blood samples from healthy controls increased monocyte adhesion and CD11b/CD18 expression, and enhanced type I IFN responses. Monocytic CD52 expression was up-regulated by interleukin-4 (IL-4)/IL-13 via the STAT6 pathway, and was down-regulated by lipopolysaccharide and IFNs α, ß, and γ in a JAK1 and histone deacetylase IIa (HDAC IIa)-dependent manner. CONCLUSION: Down-regulation of the antiadhesion CD52 antigen in CD14+ monocytes represents a novel mechanism in the pathogenesis of SSc. Targeting of the IFN-HDAC-CD52 axis in monocytes might represent a new therapeutic option for patients with early SSc.


CD52 Antigen/metabolism , Cell Adhesion/physiology , Interferon Type I/metabolism , Monocytes/cytology , Scleroderma, Systemic/mortality , Signal Transduction/physiology , Adult , Female , Humans , Male , Middle Aged , Monocytes/metabolism , Transcriptome
4.
Int J Mol Sci ; 22(4)2021 Feb 13.
Article En | MEDLINE | ID: mdl-33668422

BACKGROUND: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. METHODS AND RESULTS: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-ß. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-ß-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. CONCLUSION: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-ß-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.


Fibroblasts/metabolism , Fos-Related Antigen-2/metabolism , Gene Expression Regulation , Heart Failure/metabolism , Myocardium/metabolism , Transcription Factor AP-1/metabolism , Aged , Animals , Female , Fibroblasts/pathology , Fibrosis , Fos-Related Antigen-2/genetics , Heart Failure/genetics , Heart Failure/pathology , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Myocardium/pathology , Transcription Factor AP-1/genetics
5.
J Clin Invest ; 130(9): 4888-4905, 2020 09 01.
Article En | MEDLINE | ID: mdl-32603313

TGF-ß is a master regulator of fibrosis, driving the differentiation of fibroblasts into apoptosis-resistant myofibroblasts and sustaining the production of extracellular matrix (ECM) components. Here, we identified the nuclear long noncoding RNA (lncRNA) H19X as a master regulator of TGF-ß-driven tissue fibrosis. H19X was consistently upregulated in a wide variety of human fibrotic tissues and diseases and was strongly induced by TGF-ß, particularly in fibroblasts and fibroblast-related cells. Functional experiments following H19X silencing revealed that H19X was an obligatory factor for TGF-ß-induced ECM synthesis as well as differentiation and survival of ECM-producing myofibroblasts. We showed that H19X regulates DDIT4L gene expression, specifically interacting with a region upstream of the DDIT4L gene and changing the chromatin accessibility of a DDIT4L enhancer. These events resulted in transcriptional repression of DDIT4L and, in turn, in increased collagen expression and fibrosis. Our results shed light on key effectors of TGF-ß-induced ECM remodeling and fibrosis.


Extracellular Matrix/metabolism , Myofibroblasts/metabolism , Pulmonary Fibrosis/metabolism , RNA, Long Noncoding/metabolism , Transforming Growth Factor beta/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Humans , Mice , Myofibroblasts/pathology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/genetics
6.
Cell Rep ; 31(13): 107826, 2020 06 30.
Article En | MEDLINE | ID: mdl-32610127

Regulatory T cells (Tregs) represent a major population in the control of immune homeostasis and autoimmunity. Here we show that Fos-like 2 (Fosl2), a TCR-induced AP1 transcription factor, represses Treg development and controls autoimmunity. Mice overexpressing Fosl2 (Fosl2tg) indeed show a systemic inflammatory phenotype, with immune infiltrates in multiple organs. This phenotype is absent in Fosl2tg × Rag2-/- mice lacking T and B cells, and Fosl2 induces T cell-intrinsic reduction of Treg development that is responsible for the inflammatory phenotype. Fosl2tg T cells can transfer inflammation, which is suppressed by the co-delivery of Tregs, while Fosl2 deficiency in T cells reduces the severity of autoimmunity in the EAE model. We find that Fosl2 could affect expression of FoxP3 and other Treg development genes. Our data highlight the importance of AP1 transcription factors, in particular Fosl2, during T cell development to determine Treg differentiation and control autoimmunity.


Autoimmunity , Fos-Related Antigen-2/metabolism , Inflammation/immunology , Inflammation/pathology , T-Lymphocytes, Regulatory/immunology , Transcription Factor AP-1/metabolism , Animals , Bone Marrow/pathology , DNA-Binding Proteins/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Forkhead Transcription Factors/metabolism , Gene Deletion , Mice, Inbred C57BL , Phenotype , Receptors, Antigen, T-Cell/metabolism
7.
Cells ; 9(5)2020 05 20.
Article En | MEDLINE | ID: mdl-32443848

Cardiac fibrosis represents a serious clinical problem. Development of novel treatment strategies is currently restricted by the lack of the relevant experimental models in a human genetic context. In this study, we fabricated self-aggregating, scaffold-free, 3D cardiac microtissues using human inducible pluripotent stem cell (iPSC)-derived cardiomyocytes and human cardiac fibroblasts. Fibrotic condition was obtained by treatment of cardiac microtissues with profibrotic cytokine transforming growth factor ß1 (TGF-ß1), preactivation of foetal cardiac fibroblasts with TGF-ß1, or by the use of cardiac fibroblasts obtained from heart failure patients. In our model, TGF-ß1 effectively induced profibrotic changes in cardiac fibroblasts and in cardiac microtissues. Fibrotic phenotype of cardiac microtissues was inhibited by treatment with TGF-ß-receptor type 1 inhibitor SD208 in a dose-dependent manner. We observed that fibrotic cardiac microtissues substantially increased the spontaneous beating rate by shortening the relaxation phase and showed a lower contraction amplitude. Instead, no changes in action potential profile were detected. Furthermore, we demonstrated that contraction of human cardiac microtissues could be modulated by direct electrical stimulation or treatment with the ß-adrenergic receptor agonist isoproterenol. However, in the absence of exogenous agonists, the ß-adrenoreceptor blocker nadolol decreased beating rate of fibrotic cardiac microtissues by prolonging relaxation time. Thus, our data suggest that in fibrosis, activated cardiac fibroblasts could promote cardiac contraction rate by a direct stimulation of ß-adrenoreceptor signalling. In conclusion, a model of fibrotic cardiac microtissues can be used as a high-throughput model for drug testing and to study cellular and molecular mechanisms of cardiac fibrosis.


Fibroblasts/metabolism , Fibroblasts/pathology , Myocardium/pathology , Receptors, Adrenergic, beta/metabolism , Tissue Engineering , Adult , Electrophysiological Phenomena/drug effects , Fetus/pathology , Fibroblasts/drug effects , Fibrosis , Heart Rate/drug effects , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Phenotype , Signal Transduction/drug effects , Transforming Growth Factor beta1/pharmacology
8.
Front Cardiovasc Med ; 6: 105, 2019.
Article En | MEDLINE | ID: mdl-31417912

Background: Cardiac fibroblasts represent a main stromal cell type in the healthy myocardium. Activation of cardiac fibroblasts has been implicated in the pathogenesis of many heart diseases. Profibrotic stimuli activate fibroblasts, which proliferate and differentiate into pathogenic myofibroblasts causing a fibrotic phenotype in the heart. Cardiac fibroblasts are characterized by production of type I collagen, but non-transgenic methods allowing their identification and isolation require further improvements. Herein, we present a new and simple flow cytometry-based method to identify and isolate cardiac fibroblasts from the murine heart. Methods and Results: Wild-type and reporter mice expressing enhanced green fluorescent protein (EGFP) under the murine alpha1(I) collagen promoter (Col1a1-EGFP) were used in this study. Hearts were harvested and dissociated into single cell suspensions using enzymatic digestion. Cardiac cells were stained with the erythrocyte marker Ter119, the pan-leukocyte marker CD45, the endothelial cell marker CD31 and gp38 (known also as podoplanin). Fibroblasts were defined in a two-color flow cytometry analysis as a lineage-negative (Lin: Ter119-CD45-CD31-) and gp38-positive (gp38+) population. Analysis of hearts isolated from Col1a1-EGFP reporter mice showed that cardiac Lin-gp38+ cells corresponded to type I collagen-producing cells. Lin-gp38+ cells were partially positive for the mesenchymal markers CD44, CD140a, Sca-1 and CD90.2. Sorted Lin-gp38+ cells were successfully expanded in vitro for up to four passages. Lin-gp38+ cells activated by Transforming Growth Factor Beta 1 (TGF-ß1) upregulated myofibroblast-specific genes and proteins, developed stress fibers positive for alpha smooth muscle actin (αSMA) and showed increased contractility in the collagen gel contraction assay. Conclusions: Two-color flow cytometry analysis using the selected cell surface antigens allows for the identification of collagen-producing fibroblasts in unaffected mouse hearts without using specific reporter constructs. This strategy opens new perspectives to study the physiology and pathophysiology of cardiac fibroblasts in mouse models.

9.
Eur Heart J ; 38(18): 1413-1425, 2017 May 07.
Article En | MEDLINE | ID: mdl-27099262

AIMS: Myocardial fibrosis critically contributes to cardiac dysfunction in inflammatory dilated cardiomyopathy (iDCM). Activation of transforming growth factor-ß (TGF-ß) signalling is a key-step in promoting tissue remodelling and fibrosis in iDCM. Downstream mechanisms controlling these processes, remain elusive. METHODS AND RESULTS: Experimental autoimmune myocarditis (EAM) was induced in BALB/c mice with heart-specific antigen and adjuvant. Using heart-inflammatory precursors, as well as mouse and human cardiac fibroblasts, we demonstrated rapid secretion of Wnt proteins and activation of Wnt/ß-catenin pathway in response to TGF-ß signalling. Inactivation of extracellular Wnt with secreted Frizzled-related protein 2 (sFRP2) or inhibition of Wnt secretion with Wnt-C59 prevented TGF-ß-mediated transformation of inflammatory precursors and cardiac fibroblasts into pathogenic myofibroblasts. Inhibition of T-cell factor (TCF)/ß-catenin-mediated transcription with ICG-001 or genetic loss of ß-catenin also prevented TGF-ß-induced myofibroblasts formation. Furthermore, blocking of Smad-independent TGF-ß-activated kinase 1 (TAK1) pathway completely abrogated TGF-ß-induced Wnt secretion. Activation of Wnt pathway in the absence of TGF-ß, however, failed to transform precursors into myofibroblasts. The critical role of Wnt axis for cardiac fibrosis in iDCM is also supported by elevated Wnt-1/Wnt-5a levels in human samples from hearts with myocarditis. Accordingly, and as an in vivo proof of principle, inhibition of Wnt secretion or TCF/ß-catenin-mediated transcription abrogated the development of post-inflammatory fibrosis in EAM. CONCLUSION: We identified TAK1-mediated rapid Wnt protein secretion as a novel downstream key mechanism of TGF-ß-mediated myofibroblast differentiation and myocardial fibrosis progression in human and mouse myocarditis. Thus, pharmacological targeting of Wnts might represent a promising therapeutic approach against iDCM in the future.


Autoimmune Diseases/etiology , Myocarditis/etiology , Myocardium/pathology , Transforming Growth Factor beta/physiology , Wnt Proteins/metabolism , Animals , Benzeneacetamides/pharmacology , Cell Differentiation/physiology , Disease Progression , Fibrosis/physiopathology , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/physiology , Membrane Proteins/metabolism , Mice, Inbred BALB C , Myofibroblasts/physiology , Pyridines/pharmacology , Signal Transduction/physiology , Stem Cells/physiology , TCF Transcription Factors/metabolism , Ventricular Dysfunction/physiopathology , Wnt-5a Protein/metabolism , Wnt1 Protein/metabolism , beta Catenin/metabolism
...