Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
J Am Heart Assoc ; 13(8): e030607, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38591260

BACKGROUND: The phase 2 PIONEER-HCM (Phase 2 Open-label Pilot Study Evaluating Mavacamten in Subjects With Symptomatic Hypertrophic Cardiomyopathy and Left Ventricular Outflow Tract Obstruction) study showed that mavacamten improved left ventricular outflow tract gradients, exercise capacity, and symptoms in patients with obstructive hypertrophic cardiomyopathy (HCM), but the results of longer-term treatment are less well described. We report interim results from the PIONEER-OLE (PIONEER Open-Label Extension) study, the longest-term study of mavacamten in patients with symptomatic obstructive HCM. METHODS AND RESULTS: Patients who previously completed PIONEER-HCM (n=20) were eligible to enroll in PIONEER-OLE. Patients received oral mavacamten, 5 mg once daily (starting dose), with individualized dose titration at week 6. Evaluations included serial monitoring of safety, echocardiography, Kansas City Cardiomyopathy Questionnaire-Overall Summary Score, and serum NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels. Thirteen patients enrolled and received mavacamten (median study duration at data cutoff, 201 weeks). Most patients (92.3%) received ß-blockers concomitantly. Treatment-emergent adverse events were predominantly mild/moderate. One patient had an isolated reduction in left ventricular ejection fraction to 47%, which recovered and remained normal with continued treatment at a reduced dose. At week 180, mavacamten was associated with New York Heart Association class improvements from baseline (class II to I, n=9; class III to II, n=1; and unchanged, n=2), sustained reductions in left ventricular outflow tract gradients (mean [SD] change from baseline: resting, -50 [55] mm Hg; Valsalva, -70 [41] mm Hg), and serum NT-proBNP levels (median [interquartile range] change from baseline: -498 [-2184 to -76] ng/L), and improved Kansas City Cardiomyopathy Questionnaire-Overall Summary Score (mean [SD] change from baseline: +17 [16]). CONCLUSIONS: This long-term analysis supports the continued safety and effectiveness of mavacamten for >3 years in obstructive HCM. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03496168.


Benzylamines , Cardiomyopathy, Hypertrophic , Uracil , Ventricular Function, Left , Humans , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/complications , Pilot Projects , Stroke Volume , Uracil/analogs & derivatives
2.
IEEE Trans Med Imaging ; 43(5): 2010-2020, 2024 May.
Article En | MEDLINE | ID: mdl-38231820

Characterizing left ventricular deformation and strain using 3D+time echocardiography provides useful insights into cardiac function and can be used to detect and localize myocardial injury. To achieve this, it is imperative to obtain accurate motion estimates of the left ventricle. In many strain analysis pipelines, this step is often accompanied by a separate segmentation step; however, recent works have shown both tasks to be highly related and can be complementary when optimized jointly. In this work, we present a multi-task learning network that can simultaneously segment the left ventricle and track its motion between multiple time frames. Two task-specific networks are trained using a composite loss function. Cross-stitch units combine the activations of these networks by learning shared representations between the tasks at different levels. We also propose a novel shape-consistency unit that encourages motion propagated segmentations to match directly predicted segmentations. Using a combined synthetic and in-vivo 3D echocardiography dataset, we demonstrate that our proposed model can achieve excellent estimates of left ventricular motion displacement and myocardial segmentation. Additionally, we observe strong correlation of our image-based strain measurements with crystal-based strain measurements as well as good correspondence with SPECT perfusion mappings. Finally, we demonstrate the clinical utility of the segmentation masks in estimating ejection fraction and sphericity indices that correspond well with benchmark measurements.


Echocardiography, Three-Dimensional , Heart Ventricles , Humans , Echocardiography, Three-Dimensional/methods , Heart Ventricles/diagnostic imaging , Algorithms , Machine Learning
3.
Am J Physiol Heart Circ Physiol ; 325(3): H492-H509, 2023 09 01.
Article En | MEDLINE | ID: mdl-37417870

We present a detailed analysis of regional myocardial blood flow and work to better understand the effects of coronary stenoses and low-dose dobutamine stress. Our analysis is based on a unique open-chest model in anesthetized canines that features invasive hemodynamic monitoring, microsphere-based blood flow analysis, and an extensive three-dimensional (3-D) sonomicrometer array that provides multiaxial deformational assessments in the ischemic, border, and remote vascular territories. We use this model to construct regional pressure-strain loops for each territory and quantify the loop subcomponent areas that reflect myocardial work contributing to the ejection of blood and wasted work that does not. We demonstrate that reductions in coronary blood flow markedly alter the shapes and temporal relationships of pressure-strain loops, as well as the magnitudes of their total and subcomponent areas. Specifically, we show that moderate stenoses in the mid-left anterior descending coronary artery decrease regional midventricle myocardial work indices and substantially increase indices of wasted work. In the midventricle, these effects are most pronounced along the radial and longitudinal axes, with more modest effects along the circumferential axis. We further demonstrate that low-dose dobutamine can help to restore or even improve function, but often at the cost of increased wasted work. This detailed, multiaxial analysis provides unique insight into the physiology and mechanics of the heart in the presence of ischemia and low-dose dobutamine, with potential implications in many areas, including the detection and characterization of ischemic heart disease and the use of inotropic support for low cardiac output.NEW & NOTEWORTHY Our unique experimental model assesses cardiac pressure-strain relationships along multiple axes in multiple regions. We demonstrate that moderate coronary stenoses decrease regional myocardial work and increase wasted work and that low-dose dobutamine can help to restore myocardial function, but often with further increases in wasted work. Our findings highlight the significant directional variation of cardiac mechanics and demonstrate potential advantages of pressure-strain analyses over traditional, purely deformational measures, especially in characterizing physiological changes related to dobutamine.


Coronary Stenosis , Myocardial Ischemia , Animals , Dogs , Dobutamine/pharmacology , Myocardium , Heart , Coronary Circulation , Myocardial Contraction
4.
Circulation ; 148(5): 394-404, 2023 08.
Article En | MEDLINE | ID: mdl-37226762

BACKGROUND: The development of left ventricular systolic dysfunction (LVSD) in hypertrophic cardiomyopathy (HCM) is rare but serious and associated with poor outcomes in adults. Little is known about the prevalence, predictors, and prognosis of LVSD in patients diagnosed with HCM as children. METHODS: Data from patients with HCM in the international, multicenter SHaRe (Sarcomeric Human Cardiomyopathy Registry) were analyzed. LVSD was defined as left ventricular ejection fraction <50% on echocardiographic reports. Prognosis was assessed by a composite of death, cardiac transplantation, and left ventricular assist device implantation. Predictors of developing incident LVSD and subsequent prognosis with LVSD were assessed using Cox proportional hazards models. RESULTS: We studied 1010 patients diagnosed with HCM during childhood (<18 years of age) and compared them with 6741 patients with HCM diagnosed as adults. In the pediatric HCM cohort, median age at HCM diagnosis was 12.7 years (interquartile range, 8.0-15.3), and 393 (36%) patients were female. At initial SHaRe site evaluation, 56 (5.5%) patients with childhood-diagnosed HCM had prevalent LVSD, and 92 (9.1%) developed incident LVSD during a median follow-up of 5.5 years. Overall LVSD prevalence was 14.7% compared with 8.7% in patients with adult-diagnosed HCM. Median age at incident LVSD was 32.6 years (interquartile range, 21.3-41.6) for the pediatric cohort and 57.2 years (interquartile range, 47.3-66.5) for the adult cohort. Predictors of developing incident LVSD in childhood-diagnosed HCM included age <12 years at HCM diagnosis (hazard ratio [HR], 1.72 [CI, 1.13-2.62), male sex (HR, 3.1 [CI, 1.88-5.2), carrying a pathogenic sarcomere variant (HR, 2.19 [CI, 1.08-4.4]), previous septal reduction therapy (HR, 2.34 [CI, 1.42-3.9]), and lower initial left ventricular ejection fraction (HR, 1.53 [CI, 1.38-1.69] per 5% decrease). Forty percent of patients with LVSD and HCM diagnosed during childhood met the composite outcome, with higher rates in female participants (HR, 2.60 [CI, 1.41-4.78]) and patients with a left ventricular ejection fraction <35% (HR, 3.76 [2.16-6.52]). CONCLUSIONS: Patients with childhood-diagnosed HCM have a significantly higher lifetime risk of developing LVSD, and LVSD emerges earlier than for patients with adult-diagnosed HCM. Regardless of age at diagnosis with HCM or LVSD, the prognosis with LVSD is poor, warranting careful surveillance for LVSD, especially as children with HCM transition to adult care.


Cardiomyopathy, Hypertrophic , Ventricular Dysfunction, Left , Adult , Humans , Male , Female , Child , Ventricular Function, Left , Stroke Volume , Risk Factors , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/complications , Prognosis , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/epidemiology , Registries
5.
IEEE Trans Med Imaging ; 42(5): 1325-1336, 2023 05.
Article En | MEDLINE | ID: mdl-36459599

In nuclear imaging, limited resolution causes partial volume effects (PVEs) that affect image sharpness and quantitative accuracy. Partial volume correction (PVC) methods incorporating high-resolution anatomical information from CT or MRI have been demonstrated to be effective. However, such anatomical-guided methods typically require tedious image registration and segmentation steps. Accurately segmented organ templates are also hard to obtain, particularly in cardiac SPECT imaging, due to the lack of hybrid SPECT/CT scanners with high-end CT and associated motion artifacts. Slight mis-registration/mis-segmentation would result in severe degradation in image quality after PVC. In this work, we develop a deep-learning-based method for fast cardiac SPECT PVC without anatomical information and associated organ segmentation. The proposed network involves a densely-connected multi-dimensional dynamic mechanism, allowing the convolutional kernels to be adapted based on the input images, even after the network is fully trained. Intramyocardial blood volume (IMBV) is introduced as an additional clinical-relevant loss function for network optimization. The proposed network demonstrated promising performance on 28 canine studies acquired on a GE Discovery NM/CT 570c dedicated cardiac SPECT scanner with a 64-slice CT using Technetium-99m-labeled red blood cells. This work showed that the proposed network with densely-connected dynamic mechanism produced superior results compared with the same network without such mechanism. Results also showed that the proposed network without anatomical information could produce images with statistically comparable IMBV measurements to the images generated by anatomical-guided PVC methods, which could be helpful in clinical translation.


Algorithms , Tomography, Emission-Computed, Single-Photon , Animals , Dogs , Artifacts , Cardiac Imaging Techniques , Erythrocytes
6.
Stat Atlases Comput Models Heart ; 13131: 123-131, 2022.
Article En | MEDLINE | ID: mdl-35759335

Motion estimation and segmentation are both critical steps in identifying and assessing myocardial dysfunction, but are traditionally treated as unique tasks and solved as separate steps. However, many motion estimation techniques rely on accurate segmentations. It has been demonstrated in the computer vision and medical image analysis literature that both these tasks may be mutually beneficial when solved simultaneously. In this work, we propose a multi-task learning network that can concurrently predict volumetric segmentations of the left ventricle and estimate motion between 3D echocardiographic image pairs. The model exploits complementary latent features between the two tasks using a shared feature encoder with task-specific decoding branches. Anatomically inspired constraints are incorporated to enforce realistic motion patterns. We evaluate our proposed model on an in vivo 3D echocardiographic canine dataset. Results suggest that coupling these two tasks in a learning framework performs favorably when compared against single task learning and other alternative methods.

7.
J Nucl Med ; 63(7): 986-994, 2022 07.
Article En | MEDLINE | ID: mdl-35772956

Cardiovascular imaging is evolving in response to systemwide trends toward molecular characterization and personalized therapies. The development of new radiotracers for PET and SPECT imaging is central to addressing the numerous unmet diagnostic needs that relate to these changes. In this 2-part review, we discuss select radiotracers that may help address key unmet clinical diagnostic needs in cardiovascular medicine. Part 1 examined key technical considerations pertaining to cardiovascular radiotracer development and reviewed emerging radiotracers for perfusion and neuronal imaging. Part 2 covers radiotracers for imaging cardiovascular inflammation, thrombosis, fibrosis, calcification, and amyloidosis. These radiotracers have the potential to address several unmet needs related to the risk stratification of atheroma, detection of thrombi, and the diagnosis, characterization, and risk stratification of cardiomyopathies. In the first section, we discuss radiotracers targeting various aspects of inflammatory responses in pathologies such as myocardial infarction, myocarditis, sarcoidosis, atherosclerosis, and vasculitis. In a subsequent section, we discuss radiotracers for the detection of systemic and device-related thrombi, such as those targeting fibrin (e.g., 64Cu-labeled fibrin-binding probe 8). We also cover emerging radiotracers for the imaging of cardiovascular fibrosis, such as those targeting fibroblast activation protein (e.g., 68Ga-fibroblast activation protein inhibitor). Lastly, we briefly review radiotracers for imaging of cardiovascular calcification (18F-NaF) and amyloidosis (e.g., 99mTc-pyrophosphate and 18F-florbetapir).


Amyloidosis , Calcinosis , Thrombosis , Fibrin , Fibrosis , Humans , Inflammation/diagnostic imaging , Positron-Emission Tomography/methods
8.
J Nucl Med ; 63(5): 649-658, 2022 05.
Article En | MEDLINE | ID: mdl-35487563

The development of new radiotracers for PET and SPECT is central to addressing unmet diagnostic needs related to systemwide trends toward molecular characterization and personalized therapies in cardiovascular medicine. In the following 2-part review, we discuss select emerging radiotracers that may help address important unmet diagnostic needs in central areas of cardiovascular medicine, such as heart failure, arrhythmias, valvular disease, atherosclerosis, and thrombosis. Part 1 examines key technical considerations pertaining to cardiovascular radiotracer development and reviews emerging radiotracers for perfusion and neuronal imaging. Highlights of this work include discussions on the development of 18F-flurpiridaz, an emerging PET perfusion tracer, and the development of 18F-based radiotracers for cardiovascular neuronal imaging, such as 18F-flubrobenguane. Part 2 of this review covers emerging radiotracers for the imaging of inflammation, fibrosis, thrombosis, calcification, and cardiac amyloidosis.


Atherosclerosis , Positron-Emission Tomography , Humans , Perfusion , Positron-Emission Tomography/methods , Radiopharmaceuticals , Tomography, Emission-Computed, Single-Photon
9.
J Nucl Cardiol ; 29(2): 663-676, 2022 04.
Article En | MEDLINE | ID: mdl-32820423

BACKGROUND: We have set out to develop a catheter-based theranostic system that: (a) identifies diseased and at-risk myocardium via endocardial detection of systemically delivered ß-emitting radiotracers and (b) utilizes molecular signals to guide delivery of therapeutics to appropriate tissue via direct intramyocardial injection. METHODS: Our prototype device consists of a miniature ß-radiation detector contained within the tip of a flexible intravascular catheter. The catheter can be adapted to incorporate an injection port and retractable needle for therapeutic delivery. The performance of the ß-detection catheter was assessed in vitro with various ß-emitting radionuclides and ex vivo in hearts of pigs following systemic injection of 18F-fluorodeoxyglucose (18F-FDG) at 1-week post-myocardial infarction. Regional catheter-based endocardial measurements of 18F activity were compared to regional tissue activity from PET/CT images and gamma counting. RESULTS: The ß-detection catheter demonstrated sensitive in vitro detection of ß-radiation from 22Na (ß+), 18F (ß+), and 204Tl (ß-), with minimal sensitivity to γ-radiation. For 18F, the catheter demonstrated a sensitivity of 4067 counts/s/µCi in contact and a spatial resolution of 1.1 mm FWHM. Ex vivo measurements of endocardial 18F activity with the ß-detection catheter in the chronic pig infarct model demonstrated good qualitative and quantitative correlation with regional tissue activity from PET/CT images and gamma counting. CONCLUSION: The prototype ß-detection catheter demonstrates sensitive and selective detection of ß- and ß+ emissions over a wide range of energies and enables high-fidelity ex vivo characterization of endocardial activity from systemically delivered 18F-FDG.


Fluorodeoxyglucose F18 , Myocardial Infarction , Animals , Heart , Humans , Myocardial Infarction/diagnostic imaging , Myocardium , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Swine
10.
J Nucl Cardiol ; 29(1): 216-225, 2022 Feb.
Article En | MEDLINE | ID: mdl-32415628

OBJECTIVES: We aimed to develop a dynamic imaging technique for a novel PET superoxide tracer, [18F]DHMT, to allow for absolute quantification of myocardial reactive oxygen species (ROS) production in a large animal model. METHODS: Six beagle dogs underwent a single baseline dynamic [18F]DHMT PET study, whereas one animal underwent three serial dynamic studies over the course of chronic doxorubicin administration (1 mg·kg-1·week-1 for 15 weeks). During the scans, sequential arterial blood samples were obtained for plasma metabolite correction. The optimal compartment model and graphical analysis method were identified for kinetic modeling. Values for the left ventricular (LV) net influx rate, Ki, were reported for all the studies and compared with the LV standard uptake values (SUVs) and the LV-to-blood pool SUV ratios from the 60 to 90 minute static images. Parametric images were also generated. RESULTS: [18F]DHMT followed irreversible kinetics once oxidized within the myocardium in the presence of superoxide, as evidenced by the fitting generated by the irreversible two-tissue (2Ti) compartment model and the linearity of Patlak analysis. Myocardial Ki values showed a weak correlation with LV SUV (R2 = 0.27), but a strong correlation with LV-to-blood pool SUV ratio (R2 = 0.92). Generation of high-quality parametric images showed superior myocardial to blood contrast compared to static images. CONCLUSIONS: A dynamic PET imaging technique for [18F]DHMT was developed with full and simplified kinetic modeling for absolute quantification of myocardial superoxide production in a large animal model.


Positron-Emission Tomography , Superoxides , Animals , Dogs , Feasibility Studies , Humans , Myocardium , Positron-Emission Tomography/methods , Reactive Oxygen Species
12.
Proc IEEE Int Symp Biomed Imaging ; 2021: 536-540, 2021 Apr.
Article En | MEDLINE | ID: mdl-34168721

Accurate motion estimation and segmentation of the left ventricle from medical images are important tasks for quantitative evaluation of cardiovascular health. Echocardiography offers a cost-efficient and non-invasive modality for examining the heart, but provides additional challenges for automated analyses due to the low signal-to-noise ratio inherent in ultrasound imaging. In this work, we propose a shape regularized convolutional neural network for estimating dense displacement fields between sequential 3D B-mode echocardiography images with the capability of also predicting left ventricular segmentation masks. Manually traced segmentations are used as a guide to assist in the unsupervised estimation of displacement between a source and a target image while also serving as labels to train the network to additionally predict segmentations. To enforce realistic cardiac motion patterns, a flow incompressibility term is also incorporated to penalize divergence. Our proposed network is evaluated on an in vivo canine 3D+t B-mode echocardiographic dataset. It is shown that the shape regularizer improves the motion estimation performance of the network and our overall model performs favorably against competing methods.

13.
IEEE Trans Med Imaging ; 40(9): 2233-2245, 2021 09.
Article En | MEDLINE | ID: mdl-33872145

Reliable motion estimation and strain analysis using 3D+ time echocardiography (4DE) for localization and characterization of myocardial injury is valuable for early detection and targeted interventions. However, motion estimation is difficult due to the low-SNR that stems from the inherent image properties of 4DE, and intelligent regularization is critical for producing reliable motion estimates. In this work, we incorporated the notion of domain adaptation into a supervised neural network regularization framework. We first propose a semi-supervised Multi-Layered Perceptron (MLP) network with biomechanical constraints for learning a latent representation that is shown to have more physiologically plausible displacements. We extended this framework to include a supervised loss term on synthetic data and showed the effects of biomechanical constraints on the network's ability for domain adaptation. We validated the semi-supervised regularization method on in vivo data with implanted sonomicrometers. Finally, we showed the ability of our semi-supervised learning regularization approach to identify infarct regions using estimated regional strain maps with good agreement to manually traced infarct regions from postmortem excised hearts.


Neural Networks, Computer , Supervised Machine Learning , Heart/diagnostic imaging , Motion
14.
Proc IEEE Int Symp Biomed Imaging ; 2020: 1734-1737, 2020 Apr.
Article En | MEDLINE | ID: mdl-33005289

Accurate interpretation and analysis of echocardiography is important in assessing cardiovascular health. However, motion tracking often relies on accurate segmentation of the myocardium, which can be difficult to obtain due to inherent ultrasound properties. In order to address this limitation, we propose a semi-supervised joint learning network that exploits overlapping features in motion tracking and segmentation. The network simultaneously trains two branches: one for motion tracking and one for segmentation. Each branch learns to extract features relevant to their respective tasks and shares them with the other. Learned motion estimations propagate a manually segmented mask through time, which is used to guide future segmentation predictions. Physiological constraints are introduced to enforce realistic cardiac behavior. Experimental results on synthetic and in vivo canine 2D+t echocardiographic sequences outperform some competing methods in both tasks.

15.
Med Image Comput Comput Assist Interv ; 12266: 468-477, 2020 Oct.
Article En | MEDLINE | ID: mdl-33094292

This work presents a novel deep learning method to combine segmentation and motion tracking in 4D echocardiography. The network iteratively trains a motion branch and a segmentation branch. The motion branch is initially trained entirely unsupervised and learns to roughly map the displacements between a source and a target frame. The estimated displacement maps are then used to generate pseudo-ground truth labels to train the segmentation branch. The labels predicted by the trained segmentation branch are fed back into the motion branch and act as landmarks to help retrain the branch to produce smoother displacement estimations. These smoothed out displacements are then used to obtain smoother pseudo-labels to retrain the segmentation branch. Additionally, a biomechanically-inspired incompressibility constraint is implemented in order to encourage more realistic cardiac motion. The proposed method is evaluated against other approaches using synthetic and in-vivo canine studies. Both the segmentation and motion tracking results of our model perform favorably against competing methods.

16.
Article En | MEDLINE | ID: mdl-32994659

Accurate motion tracking of the left ventricle is critical in detecting wall motion abnormalities in the heart after an injury such as a myocardial infarction. We propose an unsupervised motion tracking framework with physiological constraints to learn dense displacement fields between sequential pairs of 2-D B-mode echocardiography images. Current deep-learning motion-tracking algorithms require large amounts of data to provide ground-truth, which is difficult to obtain for in vivo datasets (such as patient data and animal studies), or are unsuccessful in tracking motion between echocardiographic images due to inherent ultrasound properties (such as low signal-to-noise ratio and various image artifacts). We design a U-Net inspired convolutional neural network that uses manually traced segmentations as a guide to learn displacement estimations between a source and target image without ground-truth displacement fields by minimizing the difference between a transformed source frame and the original target frame. We then penalize divergence in the displacement field in order to enforce incompressibility within the left ventricle. We demonstrate the performance of our model on synthetic and in vivo canine 2-D echocardiography datasets by comparing it against a non-rigid registration algorithm and a shape-tracking algorithm. Our results show favorable performance of our model against both methods.

17.
Cardiovasc Ultrasound ; 18(1): 2, 2020 Jan 15.
Article En | MEDLINE | ID: mdl-31941514

BACKGROUND: Quantitative regional strain analysis by speckle tracking echocardiography (STE) may be particularly useful in the assessment of myocardial ischemia and viability, although reliable measurement of regional strain remains challenging, especially in the circumferential and radial directions. We present an acute canine model that integrates a complex sonomicrometer array with microsphere blood flow measurements to evaluate regional myocardial strain and flow in the setting of graded coronary stenoses and dobutamine stress. We apply this unique model to rigorously evaluate a commercial 2D STE software package and explore fundamental regional myocardial flow-function relationships. METHODS: Sonomicrometers (16 crystals) were implanted in epicardial and endocardial pairs across the anterior myocardium of anesthetized open chest dogs (n = 7) to form three adjacent cubes representing the ischemic, border, and remote regions, as defined by their relative locations to a hydraulic occluder on the mid-left anterior descending coronary artery (LAD). Additional cardiac (n = 3) and extra-cardiac (n = 3) reference crystals were placed to define the cardiac axes and aid image registration. 2D short axis echocardiograms, sonometric data, and microsphere blood flow data were acquired at baseline and in the presence of mild and moderate LAD stenoses, both before and during low-dose dobutamine stress (5 µg/kg/min). Regional end-systolic 2D STE radial and circumferential strains were calculated with commercial software (EchoInsight) and compared to those determined by sonomicrometry and to microsphere blood flow measurements. Post-systolic indices (PSIs) were also calculated for radial and circumferential strains. RESULTS: Low-dose dobutamine augmented both strain and flow in the presence of mild and moderate stenoses. Regional 2D STE strains correlated moderately with strains assessed by sonomicrometry (Rradial = 0.56, p < 0.0001; Rcirc = 0.55, p < 0.0001) and with regional flow quantities (Rradial = 0.61, Rcirc = 0.63). Overall, correspondence between 2D STE and sonomicrometry was better in the circumferential direction (Bias ± 1.96 SD: - 1.0 ± 8.2% strain, p = 0.06) than the radial direction (5.7 ± 18.3%, p < 0.0001). Mean PSI values were greatest in low flow conditions and normalized with low-dose dobutamine. CONCLUSIONS: 2D STE identifies changes in regional end-systolic circumferential and radial strain produced by mild and moderate coronary stenoses and low-dose dobutamine stress. Regional 2D STE end-systolic strain measurements correlate modestly with regional sonomicrometer strain and microsphere flow measurements.


Coronary Circulation/physiology , Coronary Stenosis/diagnosis , Coronary Vessels/physiopathology , Echocardiography, Stress/methods , Myocardial Contraction/physiology , Regional Blood Flow/physiology , Animals , Coronary Stenosis/physiopathology , Coronary Vessels/diagnostic imaging , Disease Models, Animal , Dogs , Systole
18.
JACC CardioOncol ; 2(2): 207-219, 2020 Jun.
Article En | MEDLINE | ID: mdl-34396230

BACKGROUND: The vascular endothelium is a novel target for the detection, management, and prevention of doxorubicin (DOX)-induced cardiotoxicity. OBJECTIVES: The study aimed to: 1) develop a methodology by computed tomography angiography (CTA) to evaluate stress-induced changes in epicardial coronary diameter; and 2) apply this to a chronic canine model of DOX-induced cardiotoxicity to assess vascular toxicity. METHODS: To develop and validate quantitative methods, sequential retrospectively gated coronary CTAs were performed in 16 canines. Coronary diameters were measured at prespecified distances during rest, adenosine (ADE) (280 µg/kg/min), rest 30 min post-ADE, and dobutamine (DOB) (5 µg/kg/min). A subgroup of 8 canines received weekly intravenous DOX (1 mg/kg) for 12 to 15 weeks, followed by rest-stress CTA at cumulative doses of ∼4-mg/kg (3 to 5 mg/kg), ∼8-mg/kg (7 to 9 mg/kg), and ∼12-mg/kg (12 to 15 mg/kg) of DOX. Echocardiograms were performed at these timepoints to assess left ventricular ejection fraction and global longitudinal strain. RESULTS: Under normal conditions, epicardial coronary arteries reproducibly dilated in response to ADE (left anterior descending coronary artery [LAD]: 12 ± 2%, left circumflex coronary artery [LCx]: 13 ± 2%, right coronary artery [RCA]: 14 ± 2%) and DOB (LAD: 17 ± 3%, LCx: 18 ± 2%, RCA: 15 ± 3%). With DOX, ADE vasodilator responses were impaired after ∼4-mg/kg (LAD: -3 ± 1%, LCx: 0 ± 2%, RCA: -5 ± 2%) and ∼8-mg/kg (LAD: -3 ± 1%, LCx: 0 ± 1%, RCA: -2 ± 2%). The DOB dilation response was preserved at ∼4-mg/kg of DOX (LAD: 18 ± 4%, LCx: 11 ± 3%, RCA: 11 ± 2%) but tended to decrease at ∼8-mg/kg of DOX (LAD: 4 ± 2%, LCx: 8 ± 3%, RCA: 3 ± 2%). A significant left ventricular ejection fraction reduction was observed only at 12 to 15 mg/kg DOX (baseline: 63 ± 2%, 12-mg/kg: 45 ± 3%). Global longitudinal strain was abnormal at ∼4-mg/kg of DOX (p = 0.011). CONCLUSIONS: CTA can reliably assess epicardial coronary diameter in response to pharmacological stressors, providing a noninvasive functional index of coronary vasoreactivity. Impaired epicardial vasodilation occurs early in DOX-induced cardiotoxicity.

19.
Am J Cardiol ; 123(8): 1383-1384, 2019 Apr 15.
Article En | MEDLINE | ID: mdl-30704671

Mycoplasma pneumoniae is an atypical bacterium that is frequently implicated in respiratory infections, but uncommonly identified as a cause of pericarditis. We report 2 cases of pericarditis attributed to M. pneumoniae that were characterized by prolonged respiratory prodromes, pericardial, and pleural effusions, elevated inflammatory markers, and relapsing clinical courses. In conclusion, our experience suggests that M. pneumoniae should be considered as a potential cause in cases of pericarditis associated with upper respiratory symptoms, pneumonia, pleural effusions, arthralgia, and/or a recurrent/refractory clinical course. The availability of effective antibiotic treatment makes this an important diagnosis to make.

20.
J Nucl Cardiol ; 25(6): 2096-2111, 2018 12.
Article En | MEDLINE | ID: mdl-28695406

BACKGROUND: Currently, there is no established non-invasive imaging approach to directly evaluate myocardial microcirculatory function in order to diagnose microvascular disease independent of co-existing epicardial disease. In this work, we developed a methodological framework for quantification of intramyocardial blood volume (IMBV) as a novel index of microcirculatory function with SPECT/CT imaging of 99mTc-labeled red blood cells (RBCs). METHODS: Dual-gated myocardial SPECT/CT equilibrium imaging of 99mTc-RBCs was performed on twelve canines under resting conditions. Five correction schemes were studied: cardiac gating with no other corrections (CG), CG with attenuation correction (CG + AC), CG + AC with scatter correction (CG + AC + SC), dual cardiorespiratory gating with AC + SC (DG + AC + SC), and DG + AC + SC with partial volume correction (DG + AC + SC + PVC). Quantification of IMBV using each approach was evaluated in comparison to those obtained from all corrections. The in vivo SPECT estimates of IMBV values were validated against those obtained from ex vivo microCT imaging of the casted hearts. RESULTS: The estimated IMBV with all corrections was 0.15 ± 0.03 for the end-diastolic phase and 0.11 ± 0.03 for the end-systolic phase. The cycle-dependent change in IMBV (ΔIMBV) with all corrections was 23.9 ± 8.6%. Schemes that applied no correction or partial correction resulted in significant over-estimation of IMBV and significant under-underestimation of ΔIMBV. Estimates of IMBV and ΔIMBV using all corrections were consistent with values reported in the literature using invasive techniques. In vivo SPECT estimates of IMBV strongly correlated (R2 ≥ 0.70) with ex vivo measures for the various correction schemes, while the fully corrected scheme yielded the smallest bias. CONCLUSIONS: Non-invasive quantification of IMBV is feasible using 99mTc-RBCs SPECT/CT imaging, however, requires full compensation of physical degradation factors.


Blood Volume , Coronary Circulation/physiology , Microcirculation/physiology , Single Photon Emission Computed Tomography Computed Tomography/methods , Animals , Dogs , Erythrocytes , Female , Hemodynamics , Technetium , X-Ray Microtomography
...