Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 11(18): 4275-4310, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39007354

RESUMEN

Metal ion interference therapy (MIIT) has emerged as a promising approach in the field of nanomedicine for combatting cancer. With advancements in nanotechnology and tumor targeting-related strategies, sophisticated nanoplatforms have emerged to facilitate efficient MIIT in xenografted mouse models. However, the diverse range of metal ions and the intricacies of cellular metabolism have presented challenges in fully understanding this therapeutic approach, thereby impeding its progress. Thus, to address these issues, various amplification strategies focusing on ionic homeostasis and cancer cell metabolism have been devised to enhance MIIT efficacy. In this review, the remarkable progress in Fe, Cu, Ca, and Zn ion interference nanomedicines and understanding their intrinsic mechanism is summarized with particular emphasis on the types of amplification strategies employed to strengthen MIIT. The aim is to inspire an in-depth understanding of MIIT and provide guidance and ideas for the construction of more powerful nanoplatforms. Finally, the related challenges and prospects of this emerging treatment are discussed to pave the way for the next generation of cancer treatments and achieve the desired efficacy in patients.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Metales , Nanoestructuras/uso terapéutico , Nanomedicina/métodos , Antineoplásicos/uso terapéutico , Ratones , Iones , Nanopartículas del Metal/uso terapéutico
2.
J Am Chem Soc ; 146(31): 22093-22102, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39054926

RESUMEN

Here we introduce amphiphilic star polymers as versatile protein mimics capable of approximating the activity of certain native proteins. Our study focuses on designing a synthetic polymer capable of replicating the biological activity of TRAIL, a promising anticancer protein that shows very poor circulation half-life. Successful protein mimicry requires precise control over the presentation of receptor-binding peptides from the periphery of the polymer scaffold while maintaining enough flexibility for protein-peptide binding. We show that this can be achieved by building hydrophobic blocks into the core of a star-shaped polymer, which drives unimolecular collapse in water. By screening a library of diblock copolymer stars, we were able to design structures with IC50's of ∼4 nM against a colon cancer cell line (COLO205), closely approximating the activity of the native TRAIL protein. This finding highlights the broad potential for simple synthetic polymers to mimic the biological activity of complex proteins.


Asunto(s)
Polímeros , Humanos , Polímeros/química , Polímeros/farmacología , Línea Celular Tumoral , Ligando Inductor de Apoptosis Relacionado con TNF/química , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Imitación Molecular , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología
3.
Macromol Rapid Commun ; : e2400350, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895813

RESUMEN

Antimicrobial resistance is a global healthcare challenge that urgently needs the development of new therapeutic agents. Antimicrobial peptides and mimics thereof are promising candidates but mostly suffer from inherent toxicity issues due to the non-selective binding of cationic groups with mammalian cells. To overcome this toxicity issue, this work herein reports the synthesis of a smart antimicrobial dendron with masked cationic groups (Gal-Dendron) that could be uncaged in the presence of ß-galactosidase enzyme to form the activated Enz-Dendron and confer antimicrobial activity. Enz-Dendron show bacteriostatic activity toward Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus) bacteria with minimum inhibitory concentration values of 96 µm and exerted its antimicrobial mechanism via a membrane disruption pathway, as indicated by inner and outer membrane permeabilization assays. Crucially, toxicity studies confirmed that the masked prodrug Gal-Dendron exhibited low hemolysis and is at least 2.4 times less toxic than the uncaged cationic Enz-Dendron, thus demonstrating the advantage of masking the cationic groups with responsive immolative linkers to overcome toxicity and selectivity issues. Overall, this study highlights the potential of designing new membrane-disruptive antimicrobial agents that are more biocompatible via the amine uncaging strategy.

4.
Small ; : e2310202, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822711

RESUMEN

Charged polymersomes are attractive for advanced material applications due to their versatile encapsulation capabilities and charge-induced functionality. Although desirable, the pH-sensitivity of charged block copolymers adds complexity to its self-assembly process, making it challenging to produce charged polymersomes in a reliable manner. In this work, a flow approach to control and strike a delicate balance between solvent composition and pH for self-assembly is used. This allows for the identification of a phase window to reliably produce of charged polymersomes. The utility of this approach to streamline downstream processes, such as morphological transformation or in-line purification is further demonstrated. As proof-of-concept, it is shown that the processed polymersomes can be used for surface modifications facilitated by charge complexation.

5.
ACS Appl Mater Interfaces ; 16(21): 27177-27186, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38753304

RESUMEN

Biocompatible nanoparticles as drug carriers can improve the therapeutic efficiency of hydrophobic drugs. However, the synthesis of biocompatible and biodegradable polymeric nanoparticles can be time-consuming and often involves toxic solvents. Here, a simple method for protein-based stable drug-loaded particles with a narrow polydispersity is introduced. In this process, lysozyme is mixed with hydrophobic drugs (curcumin, ellipticine, and dasatinib) and fructose to prepare lysozyme-based drug particles of around 150 nm in size. Fructose is mixed with the drug to generate nanoparticles that serve as templates for the lysozyme coating. The effect of lysozyme on the physicochemical properties of these nanoparticles is studied by transmission electron microscopy (TEM) and scattering techniques (e.g., dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS)). We observed that lysozyme significantly stabilized the curcumin fructose particles for 7 days. Moreover, additional drugs, such as ellipticine and dasatinib, can be loaded to form dual-drug particles with narrow polydispersity and spherical morphology. The results also reveal that lysozyme dual ellipticine/dasatinib curcumin particles enhance the cytotoxicity and uptake on MCF-7 cells, RAW 264.7 cells, and U-87 MG cells due to the larger and rigid hydrophobic core. In summary, lysozyme in combination with fructose and curcumin can serve as a powerful combination to form protein-based stable particles for the delivery of hydrophobic drugs.


Asunto(s)
Curcumina , Dasatinib , Portadores de Fármacos , Elipticinas , Muramidasa , Nanopartículas , Muramidasa/química , Muramidasa/metabolismo , Nanopartículas/química , Curcumina/química , Curcumina/farmacología , Animales , Humanos , Ratones , Portadores de Fármacos/química , Dasatinib/química , Dasatinib/farmacología , Elipticinas/química , Elipticinas/farmacología , Células RAW 264.7 , Células MCF-7 , Tamaño de la Partícula , Fructosa/química , Interacciones Hidrofóbicas e Hidrofílicas , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
6.
J Colloid Interface Sci ; 671: 449-456, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815380

RESUMEN

Hollow block copolymer particles called polymer vesicles (polymersomes) serve as versatile containers for compartmentalization in synthetic biology and drug delivery. Recently, there has been growing interest in using polymersomes as colloidal building blocks for creating higher-order clustered structures. Most reports thus far rely on the use of DNA base-pairing interactions to "glue" polymersomes with other colloidal components. In this study, we present two alternative electrostatically driven approaches to assemble polymersomes and model colloids (micelles) into hybrid clusters. The first approach uses pH to manipulate electrostatic interactions and effectively control the clustering extent of micellar subunits on polymersomes, while the second approach relies on the hydrolysis of an acid trigger, glucono delta-lactone (GDL), to introduce temporal control over clustering. We envisage our approaches and structures reported herein will help inspire the creation of new prospects for materials science and biomedical applications.

7.
J Am Chem Soc ; 146(12): 8120-8130, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477486

RESUMEN

Highly potent heterocyclic drugs are frequently poorly water soluble, leading to limited or abandoned further drug development. Nanoparticle technology offers a powerful delivery approach by enhancing the solubility and bioavailability of hydrophobic therapeutics. However, the common usage of organic solvents causes unwanted toxicity and process complexity, therefore limiting the scale-up of nanomedicine technology for clinical translation. Here, we show that an organic-solvent-free methodology for hydrophobic drug encapsulation can be obtained using polymers based on glucose and tyrosine. An aqueous solution based on a tyrosine-containing glycopolymer is able to dissolve solid dasatinib directly without adding an organic solvent, resulting in the formation of very small nanoparticles of around 10 nm loaded with up to 16 wt % of drug. This polymer is observed to function as both a drug solubilizer and a nanocarrier at the same time, offering a simple route for the delivery of insoluble drugs.


Asunto(s)
Nanopartículas , Tirosina , Preparaciones Farmacéuticas/química , Glucosa , Agua/química , Solventes/química , Polímeros/química , Nanopartículas/química , Solubilidad
8.
Biomacromolecules ; 25(2): 675-689, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38266160

RESUMEN

The field of single-chain nanoparticles (SCNPs) continues to mature, and an increasing range of reports have emerged that explore the application of these small nanoparticles. A key application for SCNPs is in the field of drug delivery, and recent work suggests that SCNPs can be readily internalized by cells. However, limited attention has been directed to the delivery of small-molecule drugs using SCNPs. Moreover, studies on the physicochemical effects of drug loading on SCNP performance is so far missing, despite the accepted view that such small nanoparticles should be significantly affected by the drug loading content. To address this gap, we prepared a library of SCNPs bearing different amounts of a covalently conjugated therapeutic drug-sulfasalazine (SSZ). We evaluated the impact of the conjugated drug loading on both the synthesis and biological activity of SCNPs on pancreatic cancer cells (AsPC-1). Our results reveal that covalent drug conjugation to the side chains of the SCNP polymer precursor interferes with chain collapse and cross-linking, which demands optimization of reaction conditions to reach high degrees of cross-linking efficiencies. Small-angle neutron scattering and diffusion-ordered spectroscopy nuclear magnetic resonance (DOSY NMR) analyses reveal that SCNPs with a higher drug loading display larger sizes and looser structures, as well as increased hydrophobicity associated with a higher SSZ content. Increased SSZ loading led to reduced cellular uptake when assessed in vitro, whereby SCNP aggregation on the surface of AsPC-1 cells led to reduced toxicity. This work highlights the effects of drug loading on the drug delivery efficiency and biological behavior of SCNPs.


Asunto(s)
Nanopartículas , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Preparaciones Farmacéuticas
9.
J Colloid Interface Sci ; 657: 841-852, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091907

RESUMEN

Lipid-based lyotropic liquid crystalline nanoparticles (LCNPs) face stability challenges in biological fluids during clinical translation. Ionic Liquids (ILs) have emerged as effective solvent additives for tuning the structure of LCNP's and enhancing their stability. We investigated the effect of a library of 21 choline-based biocompatible ILs with 9 amino acid anions as well as 10 other organic/inorganic anions during the preparation of phytantriol (PHY)-based LCNPs, followed by incubation in human serum and serum proteins. Small angle X-ray scattering (SAXS) results show that the phase behaviour of the LCNPs depends on the IL concentration and anion structure. Incubation with human serum led to a phase transition from the inverse bicontinuous cubic (Q2) to the inverse hexagonal (H2) mesophase, influenced by the specific IL present. Liquid chromatography-mass spectrometry (LC-MS) and proteomics analysis of selected samples, including PHY control and those with choline glutamate, choline hexanoate, and choline geranate, identified abundant proteins in the protein corona, including albumin, apolipoproteins, and serotransferrin. The composition of the protein corona varied among samples, shedding light on the intricate interplay between ILs, internal structure and surface chemistry of LCNPs, and biological fluids.


Asunto(s)
Líquidos Iónicos , Cristales Líquidos , Nanopartículas , Corona de Proteínas , Humanos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Nanopartículas/química , Aniones , Cristales Líquidos/química
10.
Biomacromolecules ; 24(11): 5046-5057, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37812059

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) drives apoptosis selectively in cancer cells by clustering death receptors (DR4 and DR5). While it has excellent in vitro selectivity and toxicity, the TRAIL protein has a very low circulation half-life in vivo, which has hampered clinical development. Here, we developed core-cross-linked micelles that present multiple copies of a TRAIL-mimicking peptide at its surface. These micelles successfully induce apoptosis in a colon cancer cell line (COLO205) via DR4/5 clustering. Micelles with a peptide density of 15% (roughly 1 peptide/45 nm2) displayed the strongest activity with an IC50 value of 0.8 µM (relative to peptide), demonstrating that the precise spatial arrangement of ligands imparted by a protein such as a TRAIL may not be necessary for DR4/5/signaling and that a statistical network of monomeric ligands may suffice. As micelles have long circulation half-lives, we propose that this could provide a potential alternative drug to TRAIL and stimulate the use of micelles in other membrane receptor clustering networks.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Neoplasias del Colon , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Micelas , Ligandos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Línea Celular Tumoral , Apoptosis , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Péptidos/farmacología , Péptidos/metabolismo , Proteínas Portadoras
11.
Mater Horiz ; 10(11): 4658-4659, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37846591

RESUMEN

Current Editorial Board Chair Martina Stenzel reflects on the last 10 years of the journal in celebration of the 10th anniversary of Materials Horizons, looking back at her time as Scientific Editor, and now Chair of the Editorial Board.

12.
Nat Commun ; 14(1): 6237, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802997

RESUMEN

Polymersomes are polymeric analogues of liposomes with exceptional physical and chemical properties. Despite being dubbed as next-generation vesicles since their inception nearly three decades ago, polymersomes have yet to experience translation into the clinical or industrial settings. This is due to a lack of reliable methods to upscale production without compromising control over polymersome properties. Herein we report a continuous flow methodology capable of producing near-monodisperse polymersomes at scale (≥3 g/h) with the possibility of performing downstream polymersome manipulation. Unlike conventional polymersomes, our polymersomes exhibit metastability under ambient conditions, persisting for a lifetime of ca. 7 days, during which polymersome growth occurs until a dynamic equilibrium state is reached. We demonstrate how this metastable state is key to the implementation of downstream processes to manipulate polymersome size and/or shape in the same continuous stream. The methodology operates in a plug-and-play fashion and is applicable to various block copolymers.

13.
Mol Pharm ; 20(4): 2017-2028, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36896581

RESUMEN

While the effects of nanoparticle properties such as shape and size on cellular uptake are widely studied, influences exerted by drug loading have so far been ignored. In this work, nanocellulose (NC) coated by Passerini reaction with poly(2-hydroxy ethyl acrylate) (PHEA-g-NC) was loaded with various amounts of ellipticine (EPT) by electrostatic interactions. The drug-loading content was determined by UV-vis spectroscopy to range between 1.68 and 8.07 wt %. Dynamic light scattering and small-angle neutron scattering revealed an increased dehydration of the polymer shell with increasing drug-loading content, which led to higher protein adsorption and more aggregation. The nanoparticle with the highest drug-loading content, NC-EPT8.0, displayed reduced cellular uptake in U87MG glioma cells and MRC-5 fibroblasts. This also translated into reduced toxicity in these cell lines as well as the breast cancer MCF-7 and the macrophage RAW264.7 cell lines. Additionally, the toxicity in U87MG cancer spheroids was unfavorable. The nanoparticle with the best performance was found to have intermediate drug-loading content where the cellular uptake was adequately high while each nanoparticle was able to deliver a sufficiently toxic amount into the cells. Medium drug loading did not hinder uptake into cells while maintaining sufficiently toxic drug concentrations. It was concluded that while striving for a high drug-loading content is appropriate when designing clinically relevant nanoparticles, it needs to be considered that the drug can cause changes in the physicochemical properties of the nanoparticles that might cause unfavorable effects.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Polímeros/química , Portadores de Fármacos/química , Línea Celular , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Macrófagos , Nanopartículas/química
14.
Angew Chem Int Ed Engl ; 62(20): e202218955, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36919238

RESUMEN

Piezocatalysis offers a means to transduce mechanical energy into chemical potential, harnessing physical force to drive redox reactions. Working in the solid state, we show here that piezoelectric BaTiO3 nanoparticles can transduce mechanical load into a flux of reactive radical species capable of initiating solid state free radical polymerization. Activation of a BaTiO3 powder by ball milling, striking with a hammer, or repeated compressive loading generates highly reactive hydroxyl radicals (⋅OH), which readily initiate radical chain growth and crosslinking of solid acrylamide, acrylate, methacrylate and styrenic monomers. Control experiments indicate a critical role for chemisorbed water on the BaTiO3 nanoparticle surface, which is oxidized to ⋅OH via mechanoredox catalysis. The force-induced production of radicals by compressing dry piezoelectric materials represents a promising new route to harness mechanical energy for solid state radical synthesis.

15.
Angew Chem Int Ed Engl ; 62(20): e202301678, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36914561

RESUMEN

Polydopamine (PDA) is a synthetic model for melanin and has a wide range of opto-electronic properties that underpin its utility in applied and biological settings, from broadband light absorbance to possessing stable free radical species. Here, we show that PDA free radicals are photo-responsive under visible light irradiation, enabling PDA to serve as a photo-redox catalyst. Steady-state and transient electron spin resonance spectroscopy reveals a reversible amplification in semiquinone radical population within PDA under visible light. This photo-response modifies the redox potential of PDA and supports sensitisation of exogenous species via photoinduced electron transfer (PET). We demonstrate the utility of this discovery by employing PDA nanoparticles to photosensitise a common diaryliodonium photoinitiator and initiate free-radical polymerisation (FRP) of vinylic monomers. In situ 1 H nuclear magnetic resonance spectroscopy reveals an interplay between PDA-driven photosensitising and radical quenching during FRP under blue, green, and red light. This work provides crucial insights into the photoactive free radical properties of melanin-like materials and reveals a promising new application for polydopamine as a photosensitiser.

16.
Curr Drug Deliv ; 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797605

RESUMEN

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

17.
ACS Macro Lett ; 12(3): 344-349, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36821525

RESUMEN

Margination describes the movement of particles toward the endothelial wall within blood vessels. While there have been several studies tracking the margination of spherical particles in blood, the behavior of anisotropic particle shapes is not well described. In this study 2D platelet particles which possess many attractive qualities for use as a drug delivery system, with their high surface area allowing for increased surface binding activity, were directly monitored and margination quantified. The margination propensity of 1 and 2 µm 2D platelet particles was contrasted to that of 2 µm spherical particles at apparent wall shear rates (WSRs) of 50, 100, and 200 s-1 by both directly tracking labeled particles using fluorescent microscopy as well as using small-angle X-ray scattering (SAXS). For fluorescence studies, margination was quantified using the margination parameter M, which describes the number of particles found closest to the walls of a microfluidic device, with an M-value of 0.2 indicating no margination. Increased margination was seen in 2D platelet particles when compared to spherical particles tested at all flow rates, with M-values of 0.39 and 0.31 seen for 1 and 2 µm 2D platelet particles, respectively, while 2 µm spherical particles had an M-value of 0.21. Similarly, margination was observed qualitatively using SAXS, with increased scattering seen for platelet particles near the microfluidic channel wall. For all particles, increased margination was seen at increasing shear rates.


Asunto(s)
Plaquetas , Sistemas de Liberación de Medicamentos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Adv Healthc Mater ; 12(14): e2201696, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36373218

RESUMEN

Nanoparticle drug formulations have many advantages for cancer therapy due to benefits in targeting selectivity, lack of systemic toxicity, and increased drug concentration in the tumor microenvironment after delivery. However, the promise of nanomedicine is limited by preclinical models that fail to accurately assess new drugs before entering human trials. In this work a new approach to testing nanomedicine using a microtumor array formed through hydrogel micropatterning is demonstrated. This technique allows partitioning of heterogeneous cell states within a geometric pattern-where boundary regions of curvature prime the stem cell-like fraction-allowing to simultaneously probe drug uptake and efficacy in different cancer cell fractions with high reproducibility. Using melanoma cells of different metastatic potential, a relationship between stem fraction and nanoparticle uptake is discovered. Deformation cytometry reveals that the stem cell-like population exhibits a more mechanically deformable cell membrane. Since the stem fraction in a tumor is implicated in drug resistance, recurrence, and metastasis, the findings suggest that nanoparticle drug formulations are well suited for targeting this dangerous cell population in cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/farmacología , Hidrogeles/farmacología , Sistemas de Liberación de Medicamentos , Reproducibilidad de los Resultados , Neoplasias/tratamiento farmacológico , Nanomedicina/métodos , Microambiente Tumoral
19.
Biochem Biophys Res Commun ; 640: 134-141, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36508926

RESUMEN

Ruthenium complexes have been widely studied as potential alternatives to platinum-type anticancer drugs due to their unique medical properties such as high selectivity, strong ability to inhibit solid tumour metastasis. However, non-specific biodistribution, and weak lethality of ruthenium to cancer cells limit its use in medical application. Drug delivery systems offer the ability to integrate multiple drugs in one system, which is particularly important to enhance the chemotherapeutic efficacy and to potentially achieve a synergistic effect of both drugs. Here, we report a dual drug nanocarrier that is based on a self-assembled biodegradable block copolymer, where the ruthenium complex (RAPTA-C) is chemically attached to the polymer chain, while another drug, paclitaxel (PTX), is entrapped in the core of the micelle. The dual drug delivery system was studied via in vitro tests using MDA-MB-231 breast cancer cells and it was observed that RAPTA-C in combination with PTX significantly enhanced anti-tumour and anti-metastasis activity.


Asunto(s)
Nanopartículas , Neoplasias , Rutenio , Humanos , Paclitaxel/farmacología , Paclitaxel/química , Fructosa , Distribución Tisular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Micelas , Nanopartículas/química , Polímeros , Portadores de Fármacos/química
20.
Exploration (Beijing) ; 3(6): 20220075, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38264690

RESUMEN

The alignment of anisotropic nanoparticles in flow has been used for a range of applications such as the preparation of strong fibres and the assembly of in-plane aligned 1D-nanoobjects that are used for electronic devices, sensors, energy and biological application. Important is also the flow behaviour of nanoparticles that were designed for nanomedical applications such as drug delivery. It is widely observed that non-spherical nanoparticles have longer circulation times and a more favourable biodistribution. To be able to understand this behaviour, researchers have turned to analyzing the flow of non-spherical nanoparticles in the blood stream. In this review, an overview of microfluidic techniques that are used to monitor the alignment of anisotropic nanoparticles in solution will be provided, which includes analysis by small angle X-ray scattering (SAXS) and polarized light microscopy. The flow of these nanoparticles in blood is then discussed as the presence of red blood cells causes margination of some nanoparticles. Using fluorescence microscopy, the extent of margination can be identified, which coincides with the ability of nanoparticles to adhere to the cells grown along the wall. While these studies are mainly carried out in vitro using blood, initial investigations in vivo were able to confirm the unusual flow of anisotropic nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA