Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
2.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R682-R691, 2023 12 01.
Article En | MEDLINE | ID: mdl-37781734

Non-Hispanic Black (BL) individuals have the highest prevalence of hypertension and cardiovascular disease (CVD) compared with all other racial/ethnic groups. Previous work focused on racial disparities in sympathetic control and blood pressure (BP) regulation between young BL and White (WH) adults, have mainly included men. Herein, we hypothesized that BL women would exhibit augmented resting sympathetic vascular transduction and greater sympathetic and BP reactivity to cold pressor test (CPT) compared with WH women. Twenty-eight young healthy women (BL: n = 14, 22 [Formula: see text] 4 yr; WH: n = 14, 22 [Formula: see text] 4 yr) participated. Beat-to-beat BP (Finometer), common femoral artery blood flow (duplex Doppler ultrasound), and muscle sympathetic nerve activity (MSNA; microneurography) were continuously recorded. In a subset (BL n = 10, WH n = 11), MSNA and BP were recorded at rest and during a 2-min CPT. Resting sympathetic vascular transduction was quantified as changes in leg vascular conductance (LVC) and mean arterial pressure (MAP) following spontaneous bursts of MSNA using signal averaging. Sympathetic and BP reactivity were quantified as changes in MSNA and MAP during the last minute of CPT. There were no differences in nadir LVC following resting MSNA bursts between BL (-8.70 ± 3.43%) and WH women (-7.30 ± 3.74%; P = 0.394). Likewise, peak increases in MAP following MSNA bursts were not different between groups (BL: +2.80 ± 1.42 mmHg; vs. WH: +2.99 ± 1.15 mmHg; P = 0.683). During CPT, increases in MSNA and MAP were also not different between BL and WH women, with similar transduction estimates between groups (ΔMAP/ΔMSNA; P = 0.182). These findings indicate that young, healthy BL women do not exhibit exaggerated sympathetic transduction or augmented sympathetic and BP reactivity during CPT.NEW & NOTEWORTHY This study was the first to comprehensively investigate sympathetic vascular transduction and sympathetic and BP reactivity during a cold pressor test in young, healthy BL women. We demonstrated that young BL women do not exhibit exaggerated resting sympathetic vascular transduction and do not have augmented sympathetic or BP reactivity during cold stress compared with their WH counterparts. Collectively, these findings suggest that alterations in sympathetic transduction and reactivity are not apparent in young, healthy BL women.


Hypertension , Adult , Female , Humans , Male , Blood Pressure/physiology , Heart Rate/physiology , Hemodynamics , Muscle, Skeletal/innervation , Sympathetic Nervous System , Black or African American , White
3.
Am J Physiol Heart Circ Physiol ; 324(6): H713-H720, 2023 06 01.
Article En | MEDLINE | ID: mdl-37000609

Many individuals who had coronavirus disease 2019 (COVID-19) develop detrimental persistent symptoms, a condition known as postacute sequelae of COVID-19 (PASC). Despite the elevated risk of cardiovascular disease following COVID-19, limited studies have examined vascular function in PASC with equivocal results reported. Moreover, the role of PASC symptom burden on vascular health has not been examined. We tested the hypothesis that peripheral and cerebral vascular function would be blunted and central arterial stiffness would be elevated in patients with PASC compared with age-matched controls. Furthermore, we hypothesized that impairments in vascular health would be greater in those with higher PASC symptom burden. Resting blood pressure (BP; brachial and central), brachial artery flow-mediated dilation (FMD), forearm reactive hyperemia, carotid-femoral pulse wave velocity (PWV), and cerebral vasodilator function were measured in 12 females with PASC and 11 age-matched female controls without PASC. The severity of persistent symptoms in those with PASC was reported on a scale of 1-10 (higher score: greater severity). Brachial BP (e.g., systolic BP, 126 ± 19 vs.109 ± 8 mmHg; P = 0.010), central BP (P < 0.050), and PWV (7.1 ± 1.2 vs. 6.0 ± 0.8 m/s; P = 0.015) were higher in PASC group compared with controls. However, FMD, reactive hyperemia, and cerebral vasodilator function were not different between groups (P > 0.050 for all). Total symptom burden was not correlated with any measure of cardiovascular health (P > 0.050 for all). Collectively, these findings indicate that BP and central arterial stiffness are elevated in females with PASC, whereas peripheral and cerebral vascular function appear to be unaffected, effects that appear independent of symptom burden.NEW & NOTEWORTHY We demonstrate for the first time that resting blood pressure (BP) and central arterial stiffness are higher in females with PASC compared with controls. In contrast, peripheral and cerebral vascular functions appear unaffected. Moreover, there was no relationship between total PASC symptom burden and measures of BP, arterial stiffness, or vascular function. Collectively, these findings suggest that females with PASC could be at greater risk of developing hypertension, which appears independent of symptom burden.


COVID-19 , Hyperemia , Vascular Stiffness , Humans , Female , Pulse Wave Analysis , COVID-19/complications , Blood Pressure , Vasodilator Agents/pharmacology , Brachial Artery
4.
Am J Physiol Heart Circ Physiol ; 323(6): H1206-H1211, 2022 12 01.
Article En | MEDLINE | ID: mdl-36331556

Emerging evidence suggests that COVID-19 may affect cardiac autonomic function; however, the limited findings in young adults with COVID-19 have been equivocal. Notably, symptomology and time since diagnosis appear to influence vascular health following COVID-19, but this has not been explored in the context of cardiac autonomic regulation. Therefore, we hypothesized that young adults who had persistent symptoms following COVID-19 would have lower heart rate variability (HRV) and cardiac baroreflex sensitivity (BRS) compared with those who had COVID-19 but were asymptomatic at testing and controls who never had COVID-19. Furthermore, we hypothesized that there would be relationships between cardiac autonomic function measures and time since diagnosis. We studied 27 adults who had COVID-19 and were either asymptomatic (ASYM; n = 15, 6 females); 21 ± 4 yr; 8.4 ± 4.0 wk from diagnosis) or symptomatic (SYM; n = 12, 9 females); 24 ± 3 yr; 12.3 ± 6.2 wk from diagnosis) at testing, and 20 adults who reported never having COVID-19 (24 ± 4 yr, 11 females). Heart rate and beat-to-beat blood pressure were continuously recorded during 5 min of rest to assess HRV and cardiac BRS. HRV [root mean square of successive differences between normal heartbeats (RMSSD); control, 73 ± 50 ms; ASYM, 71 ± 47 ms; and SYM, 84 ± 45 ms; P = 0.774] and cardiac BRS (overall gain; control, 22.3 ± 10.1 ms/mmHg; ASYM, 22.7 ± 12.2 ms/mmHg; and SYM, 24.3 ± 10.8 ms/mmHg; P = 0.871) were not different between groups. However, we found correlations with time since diagnosis for HRV (e.g., RMSSD, r = 0.460, P = 0.016) and cardiac BRS (overall gain, r = 0.470, P = 0.014). These data suggest a transient impact of COVID-19 on cardiac autonomic function that appears mild and unrelated to persistent symptoms in young adults.NEW & NOTEWORTHY The potential role of persistent COVID-19 symptoms on cardiac autonomic function in young adults was investigated. We observed no differences in heart rate variability or cardiac baroreflex sensitivity between controls who never had COVID-19 and those who had COVID-19, regardless of symptomology. However, there were significant relationships between measures of cardiac autonomic function and time since diagnosis, suggesting that COVID-19-related changes in cardiac autonomic function are transient in young, otherwise healthy adults.


COVID-19 , Female , Young Adult , Humans , Autonomic Nervous System , Baroreflex/physiology , Heart Rate/physiology , Heart , Blood Pressure/physiology
5.
J Appl Physiol (1985) ; 133(1): 183-190, 2022 07 01.
Article En | MEDLINE | ID: mdl-35708703

Previous studies have reported detrimental effects of COVID-19 on the peripheral vasculature. However, reports on blood pressure (BP) are inconsistent, and measurements are made only in the laboratory setting. To date, no studies have measured ambulatory BP. In addition, in previous studies, time since COVID-19 diagnosis among participants varied across a wide range, potentially contributing to the inconsistent BP results. Thus, we aimed to perform a comprehensive assessment of BP and BP variability using ambulatory and laboratory (brachial and central) measurements in young adults who had COVID-19. We hypothesized that ambulatory BP would be elevated post-COVID-19 and that measures of BP would be inversely related with time since diagnosis. Twenty-eight young adults who had COVID-19 [11 ± 6 (range 3-22) wk since diagnosis] and 10 controls were studied. Ambulatory daytime, nighttime, and 24-h systolic BP, diastolic BP, and mean BP were not different between the control and COVID groups (e.g., daytime systolic BP: control, 122 ± 12 mmHg; COVID, 122 ± 10 mmHg; P = 0.937). Similar results were observed for laboratory BPs (all P > 0.05). However, ambulatory daytime, nighttime, and 24-h BPs as well as laboratory brachial BPs were inversely correlated with time since COVID-19 diagnosis (e.g., daytime systolic BP: r = -0.444; P = 0.044, nighttime systolic BP: r = -0.518; P = 0.016). Ambulatory and laboratory-measured BP variability were not different between groups nor correlated with time since diagnosis. Collectively, these data suggest that adverse effects of COVID-19 on BP in young adults are minimal and likely transient.NEW & NOTEWORTHY We report for the first time that ambulatory daytime, nighttime, and 24-h blood pressure (BP), as well as laboratory BP, were not different between control and COVID participants. However, a significant inverse relationship with time since COVID-19 diagnosis was found (i.e., greater BP with more recent infection). Ambulatory and laboratory BP variability were unaffected and not related with diagnosis time. These findings suggest that COVID-19 may exert only short-lasting effects on BP in young adults.


COVID-19 , Hypertension , Blood Pressure/physiology , Blood Pressure Monitoring, Ambulatory/methods , COVID-19/diagnosis , COVID-19 Testing , Circadian Rhythm/physiology , Cross-Sectional Studies , Humans , Hypertension/diagnosis , Young Adult
6.
Am J Physiol Heart Circ Physiol ; 323(1): H59-H64, 2022 07 01.
Article En | MEDLINE | ID: mdl-35594069

We and others have previously shown that COVID-19 results in vascular and autonomic impairments in young adults. However, the newest variant of COVID-19 (Omicron) appears to have less severe complications. Therefore, we investigated whether recent breakthrough infection with COVID-19 during the Omicron wave impacts cardiovascular health in young adults. We hypothesized that measures of vascular health and indices of cardiac autonomic function would be impaired in those who had the Omicron variant of COVID-19 when compared with controls who never had COVID-19. We studied 23 vaccinated adults who had COVID-19 after December 25, 2021 (Omicron; age, 23 ± 3 yr; 14 females) within 6 wk of diagnosis compared with 13 vaccinated adults who never had COVID-19 (age, 26 ± 4 yr; 7 females). Macro- and microvascular function were assessed using flow-mediated dilation (FMD) and reactive hyperemia, respectively. Arterial stiffness was determined as carotid-femoral pulse wave velocity (cfPWV) and augmentation index (AIx). Heart rate (HR) variability and cardiac baroreflex sensitivity (BRS) were assessed as indices of cardiac autonomic function. FMD was not different between control (5.9 ± 2.8%) and Omicron (6.1 ± 2.3%; P = 0.544). Similarly, reactive hyperemia (P = 0.884) and arterial stiffness were not different between groups (e.g., cfPWV; control, 5.9 ± 0.6 m/s and Omicron, 5.7 ± 0.8 m/s; P = 0.367). Finally, measures of HR variability and cardiac BRS were not different between groups (all, P > 0.05). Collectively, these data suggest preserved vascular health and cardiac autonomic function in young, otherwise healthy adults who had breakthrough cases of COVID-19 during the Omicron wave.NEW & NOTEWORTHY We show for the first time that breakthrough cases of COVID-19 during the Omicron wave does not impact vascular health and cardiac autonomic function in young adults. These are promising results considering earlier research showing impaired vascular and autonomic function following previous variants of COVID-19. Collectively, these data demonstrate that the recent Omicron variant is not detrimental to cardiovascular health in young, otherwise healthy, vaccinated adults.


COVID-19 , Hyperemia , Vascular Stiffness , Adult , Female , Humans , Pulse Wave Analysis , SARS-CoV-2 , Vascular Stiffness/physiology , Young Adult
7.
Am J Physiol Heart Circ Physiol ; 321(3): H479-H484, 2021 09 01.
Article En | MEDLINE | ID: mdl-34296966

Recent findings suggest that COVID-19 causes vascular dysfunction during the acute phase of the illness in otherwise healthy young adults. To date, to our knowledge, no studies have investigated the longer-term effects of COVID-19 on vascular function. Herein, we hypothesized that young, otherwise healthy adults who are past the acute phase of COVID-19 would exhibit blunted peripheral [brachial artery flow-mediated dilation (FMD) and reactive hyperemia] and cerebral vasodilator function (cerebral vasomotor reactivity to hypercapnia; CVMR) and increased central arterial stiffness. Sixteen young adults who were at least 4 wk past a COVID-19 diagnosis and 12 controls who never had COVID-19 were studied. Eight subjects with COVID-19 were symptomatic (SYM) and eight were asymptomatic (ASYM) at the time of testing. FMD and reactive hyperemia were not different between COVID and control groups. However, FMD was lower in SYM (3.8 ± 0.6%) compared with ASYM (6.8 ± 0.9%; P = 0.007) and control (6.8 ± 0.6%; P = 0.003) with no difference between ASYM and control. Similarly, peak blood velocity following cuff release was lower in SYM (47 ± 8 cm/s) compared with ASYM (64 ± 19 cm/s; P = 0.025) and control (61 ± 14 cm/s; P = 0.036). CVMR and arterial stiffness were not different between any groups. In summary, peripheral macrovascular and microvascular function, but not cerebral vascular function or central arterial stiffness were blunted in young adults symptomatic beyond the acute phase of COVID-19. In contrast, those who were asymptomatic had similar vascular function compared with controls who never had COVID-19.NEW & NOTEWORTHY This study was the first to investigate the persistent effects of COVID-19 on vascular function in otherwise healthy young adults. We demonstrated that peripheral macrovascular and microvascular vasodilation was significantly blunted in young adults still symptomatic from COVID-19 beyond the acute phase (>4 wk from diagnosis), whereas those who become asymptomatic have similar vascular function compared with controls who never had COVID-19. In contrast, cerebral vascular function and central arterial stiffness were unaffected irrespective of COVID-19 symptomology.


COVID-19/complications , Cerebrovascular Circulation , Regional Blood Flow , Vasodilation , Adult , Blood Flow Velocity , COVID-19/diagnosis , COVID-19/physiopathology , Female , Humans , Male , Vascular Stiffness , Post-Acute COVID-19 Syndrome
8.
Med Sci Sports Exerc ; 53(3): 590-596, 2021 03 01.
Article En | MEDLINE | ID: mdl-32910095

PURPOSE: Non-Hispanic Black individuals have a blunted ability to vasodilate at rest compared with other racial groups. Limited studies have investigated blood flow responses to exercise in Black individuals. Recently, our laboratory demonstrated that Black men exhibit attenuated increases in forearm vascular conductance (FVC) during steady-state rhythmic handgrip. The mechanisms for this remain unknown. Herein, we used single muscle contractions, a modality that allows for assessment of rapid-onset vasodilation (ROV) independent of major elevations in shear stress, tissue metabolism, and systemic hemodynamics. METHODS: Ten young, healthy Black and White men performed single forearm contractions at 20%, 40%, and 60% maximal voluntary contraction (MVC). In addition, cuff inflations were performed on the forearm to examine the contribution of mechanical compression to ROV. Forearm blood flow (FBF; duplex Doppler ultrasound), heart rate (ECG), and mean arterial pressure (Finometer) were continuously measured. FVC was calculated as FBF/mean arterial pressure. RESULTS: Baseline FVC (White men vs Black men, 0.75 ± 0.11 vs 0.80 ± 0.09 mL·min-1·mm Hg-1; P = 0.73), FBF, and MVCs (White men vs Black men, 54 ± 2 vs 54 ± 2 kg; P = 0.95) were similar between the groups. After single contractions, both groups exhibited intensity-dependent FVC and FBF increases during ROV; however, these responses were attenuated in the Black group at all intensities (e.g., 60%MVC FVC: White men vs Black men, +371% ± 37% vs +220% ± 23% baseline; P = 0.001). FVC and FBF responses to cuff inflation alone were also attenuated in Black individuals (P < 0.001). CONCLUSIONS: Collectively, these data indicate that Black men have an overall blunted ability to rapidly vasodilate compared with young White men.


Black People , Forearm/blood supply , Hand Strength/physiology , Muscle Contraction/physiology , Vasodilation/physiology , Hemodynamics/physiology , Humans , Male , White People , Young Adult
9.
FASEB J ; 34(11): 14073-14082, 2020 11.
Article En | MEDLINE | ID: mdl-32949436

Cardiovascular disease (CVD) affects individuals of all races and ethnicities; however, its prevalence is highest in non-Hispanic black individuals (BL) relative to other populations. While previous research has provided valuable insight into elevated CVD risk in the BL population, this work has been almost exclusively conducted in men. This is alarming given that BL women suffer from CVD at an equivalent rate to BL men and each has a greater prevalence when compared to all other ethnicities, regardless of sex. The importance of investigating sex differences in mechanisms of cardiovascular function is highlighted by the National Institute of Health requiring sex to be considered as a biological variable in research studies to better our "understanding of key sex influences on health processes and outcomes." The mechanism(s) responsible for the elevated CVD risk in BL women remains unclear and is likely multifactorial. Limited studies in BL women suggest that, while impaired vasodilator capacity is involved, heightened vasoconstrictor tone and/or responsiveness may also contribute. Within this mini-review, we will discuss potential mechanisms of elevated rates of hypertension and other CVDs in BL individuals with a particular focus on young, otherwise healthy, college-aged women. To stimulate academic thought and future research, we will also discuss potential mechanisms for impaired vascular function in BL women, as well as possible divergent mechanisms between BL men and women based on either preliminary data or plausible speculation extending from findings in the existing literature. Last, we will conclude with potential future research directions aimed at better understanding the elevated risk for hypertension and CVD in BL women.


Black or African American/statistics & numerical data , Cardiovascular Diseases/epidemiology , Vasoconstriction , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/pathology , Female , Humans , Male , Prevalence , Risk Factors , Sex Factors
10.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R323-R328, 2020 09 01.
Article En | MEDLINE | ID: mdl-32783690

Black men have attenuated increases in forearm vascular conductance (FVC) and forearm blood flow (FBF) during moderate- and high-intensity rhythmic handgrip exercise compared with White men, but the underlying mechanisms are unclear. Here, we tested for the first time the hypothesis that functional sympatholysis (i.e., attenuation of sympathetic vasoconstriction in the exercising muscles) is impaired in Black men compared with White men. Thirteen White and 14 Black healthy young men were studied. FBF (duplex Doppler ultrasound) and mean arterial pressure (MAP; Finometer) were measured at rest and during rhythmic handgrip exercise at 30% maximal voluntary contraction. FVC was calculated as FBF/MAP. Sympathetic activation was induced via lower body negative pressure (LBNP) at -20 Torr for 2 min at rest and from the 3rd to the 5th min of handgrip. Sympathetic vasoconstriction was assessed as percent reductions in FVC during LBNP. The groups presented similar resting FVC, FBF, and MAP. During LBNP at rest, reductions in FVC were not different between White (-35 ± 10%) and Black men (-32 ± 14%, P = 0.616), indicating similar reflex-induced sympathetic vasoconstriction. During handgrip exercise, there were minimal reductions in FVC with LBNP in either group (White: -1 ± 7%; Black: +1 ± 8%; P = 0.523), indicating functional sympatholysis in both groups. Thus, contrary to our hypothesis, our findings indicate a preserved functional sympatholysis in healthy young Black men compared with White men, suggesting that this mechanism does not appear to contribute to reduced exercise hyperemia during moderate-intensity rhythmic handgrip in this population.


Exercise/physiology , Hand Strength/physiology , Oxygen Consumption/physiology , Vasoconstriction/physiology , Adult , Humans , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Regional Blood Flow/physiology , Sympathetic Nervous System/physiopathology
11.
Exp Physiol ; 105(7): 1102-1110, 2020 07.
Article En | MEDLINE | ID: mdl-32362031

NEW FINDINGS: What is the central question of this study? The prevalence of hypertension in black individuals exceeds that in other racial groups. Despite this well-known heightened risk, the underlying contributory factors remain incompletely understood. We hypothesized that young black men would exhibit augmented beat-to-beat blood pressure variability compared with white men and that black men would exhibit augmented total peripheral resistance variability. What is the main finding and its importance? We demonstrate that young, healthy black men exhibit greater resting beat-to-beat blood pressure variability compared with their white counterparts, which is accompanied by greater variability in total peripheral resistance. These swings in blood pressure over time might contribute to the enhanced cardiovascular risk profile in black individuals. ABSTRACT: The prevalence of hypertension in black (BL) individuals exceeds that in other racial groups. Recently, resting beat-to-beat blood pressure (BP) variability has been shown to predict cardiovascular risk and detect target organ damage better than ambulatory BP monitoring. Given the heightened risk in BL individuals, we hypothesized young BL men would exhibit augmented beat-to-beat BP variability compared with white (WH) men. Furthermore, given studies reporting reduced vasodilatation and augmented vasoconstriction in BL individuals, we hypothesized that BL men would exhibit augmented variability in total peripheral resistance (TPR). In 45 normotensive men (24 BL), beat-to-beat BP (Finometer) was measured during 10-20 min of quiet rest. Cardiac output and TPR were estimated (Modelflow method). Despite similar resting BP, BL men exhibited greater BP standard deviation (e.g. systolic BP SD; BL, 7.1 ± 2.2 mmHg; WH, 5.4 ± 1.5 mmHg; P = 0.006) compared with WH men, which was accompanied by a greater TPR SD (P = 0.003), but not cardiac output SD (P = 0.390). Other traditional measures of variability provided similar results. Histogram analysis indicated that BL men exhibited a greater percentage of cardiac cycles with BPs higher (> +10 mmHg higher) and lower (< -8 mmHg lower) than mean systolic BP compared with WH men (interaction, P < 0.001), which was accompanied by a greater percentage of cardiac cycles with high/low TPR (P < 0.001). In a subset of subjects (n = 30), reduced sympathetic baroreflex sensitivity was associated with augmented BP variability (r = -0.638, P < 0.001), whereas cardiac baroreflex sensitivity had no relationship (P = 0.447). Herein, we document an augmented beat-to-beat BP variability in young BL men, which coincided with fluctuations in vascular resistance and reduced sympathetic BRS.


Black or African American , Blood Pressure , Vascular Resistance , Adult , Baroreflex/physiology , Cardiac Output , Heart/physiology , Heart Rate , Humans , Hypertension/epidemiology , Male , Rest , White People , Young Adult
12.
Am J Physiol Heart Circ Physiol ; 317(2): H308-H314, 2019 08 01.
Article En | MEDLINE | ID: mdl-31100010

Increased consumption of inorganic phosphate (Pi), an abundant ingredient in processed foods, has been associated with elevated cardiovascular disease risk; however, studies investigating underlying mechanisms are limited. Recently, high dietary Pi was shown to exaggerate the pressor response to static muscle contraction in rodents in part because of overactivation of metabolically sensitive skeletal muscle afferents. Whether acute high Pi consumption affects muscle metaboreflex activation in humans remains unknown. Furthermore, although acute high Pi consumption has been shown to impair vascular function in young healthy men, equivocal results have been reported. Therefore, we hypothesized that acute high Pi consumption augments mean arterial pressure (MAP) responses during muscle metaboreflex activation, impairs endothelial function, and increases arterial stiffness in young healthy men. Subjects performed 35% maximal voluntary contraction static handgrip (HG), followed by postexercise ischemia (PEI) to isolate muscle metaboreflex activation. Resting flow-mediated dilation (FMD) and arterial stiffness were assessed. Measures were made before (pre) and 60 min after (post) subjects consumed either a high-phosphate drink (2,000 mg phosphorus and 1,520 mg sodium) or a sodium drink (1,520 mg sodium; control). MAP responses during HG (preΔ = +23 ± 3 mmHg; postΔ = +21 ± 2 mmHg; P = 0.101) and PEI (preΔ = +21 ± 4 mmHg; postΔ = +18 ± 3 mmHg; P = 0.184) were similar before and after Pi consumption. In contrast, FMD was significantly attenuated following Pi (pre = 5.1 ± 0.5%; post = 3.5 ± 0.5%; P = 0.010), whereas arterial stiffness remained unchanged. There were no changes in any measured variable after control drink consumption. In summary, although the muscle metaboreflex remains unaffected following acute high Pi consumption in young healthy men, endothelial function is impaired. NEW & NOTEWORTHY This study was the first to investigate the influence of acute high-phosphate consumption on the pressor response during isometric handgrip and isolated muscle metaboreflex activation during postexercise ischemia in young healthy humans. We demonstrated that a single high dose of phosphate (2,000 mg) did not augment blood pressure in response to exercise or isolated muscle metaboreflex activation, but endothelial function was blunted in young healthy men.


Brachial Artery/physiopathology , Chemoreceptor Cells/metabolism , Endothelium, Vascular/physiology , Energy Metabolism , Muscle, Skeletal , Phosphates/administration & dosage , Phosphorus, Dietary/administration & dosage , Reflex , Vascular Stiffness , Adaptation, Physiological , Arterial Pressure , Beverages , Brachial Artery/diagnostic imaging , Endothelium, Vascular/diagnostic imaging , Healthy Volunteers , Humans , Male , Muscle Contraction , Muscle, Skeletal/blood supply , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Phosphates/metabolism , Phosphorus, Dietary/metabolism , Regional Blood Flow , Time Factors , Young Adult
13.
J Appl Physiol (1985) ; 125(6): 1779-1786, 2018 Dec 01.
Article En | MEDLINE | ID: mdl-30188801

The role of the sympathetic nervous system in cerebral blood flow (CBF) regulation remains unclear. Previous studies have primarily measured middle cerebral artery blood velocity to assess CBF. Recently, there has been a transition toward measuring internal carotid artery (ICA) and vertebral artery (VA) blood flow using duplex Doppler ultrasound. Given that the VA supplies autonomic control centers in the brainstem, we hypothesized that graded sympathetic activation via lower body negative pressure (LBNP) would reduce ICA but not VA blood flow. ICA and VA blood flow were measured during two protocols: protocol 1, low-to-moderate LBNP (-10, -20, -30, and -40 Torr) and protocol 2, moderate-to-high LBNP (-30, -50, and -70 Torr). ICA and VA blood flow, diameter, and blood velocity were unaffected up to -40 LBNP. However, -50 and -70 LBNP evoked reductions in ICA and VA blood flow [e.g., -70 LBNP: percent change (%∆)VA-baseline = -27.6 ± 3.0] that were mediated by decreases in both diameter and velocity (e.g., -70 LBNP: %∆VA-baseline diameter = -7.5 ± 1.9 and %∆VA-baseline velocity = -13.6 ± 1.7), which were comparable between vessels. Since hyperventilation during -70 LBNP reduced end-tidal pressure of carbon dioxide ([Formula: see text]), this decrease in [Formula: see text] was matched via voluntary hyperventilation. Reductions in ICA and VA blood flow during hyperventilation alone were significantly smaller than during -70 LBNP and were primarily mediated by decreases in velocity (%∆VA-baseline velocity = -8.6 ± 2.4 and %∆VA-baseline diameter = -0.05 ± 0.56). These data demonstrate that both ICA and VA were unaffected by low-to-moderate sympathetic activation, whereas robust reflex-mediated sympathoexcitation caused similar magnitudes of vasoconstriction in both arteries. Thus, contrary to our hypothesis, the ICA was not preferentially vasoconstricted by sympathetic activation.NEW & NOTEWORTHY Our study demonstrates that moderate-to-high reflex-mediated sympathetic activation with lower body negative pressure (LBNP) decreases internal carotid artery and vertebral artery blood flow via reductions in both vessel diameter and blood velocity. This vasoconstriction was primarily sympathetically mediated as voluntary hyperventilation alone, to isolate the effect of decreases in end-tidal pressure of carbon dioxide that occurred during LBNP, resulted in a significantly smaller vasoconstriction. In contrast to our hypothesis, these data indicate a lack of heterogeneity between the anterior and posterior cerebral circulations in response to sympathoexcitation.

14.
Am J Physiol Heart Circ Physiol ; 315(5): H1316-H1321, 2018 11 01.
Article En | MEDLINE | ID: mdl-30118345

Previous studies have demonstrated that African-American (AA) individuals have heightened vasoconstrictor and reduced vasodilator responses under resting conditions compared with Caucasian-American (CA) individuals. However, potential differences in vascular responses to exercise remain unclear. Therefore, we tested the hypothesis that, compared with CA subjects, AA subjects would present an attenuated increase in forearm vascular conductance (FVC) during rhythmic handgrip exercise. Forearm blood flow (FBF; duplex Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured in healthy young CA ( n = 10) and AA ( n = 10) men during six trials of rhythmic handgrip performed at workloads of 4, 8, 12, 16, 20, and 24 kg. FVC (calculated as FBF/MAP), FBF, and MAP were similar between groups at rest (FVC: 63 ± 7 ml·min-1·100 mmHg-1 in CA subjects vs. 62 ± 7 ml·min-1·100 mmHg-1 in AA subjects, P = 0.862). There was an intensity-dependent increase in FVC during exercise in both groups; however, AA subjects presented lower FVC (interaction P < 0.001) at 8-, 12-, 16-, 20-, and 24-kg workloads (e.g., 24 kg: 324 ± 20 ml·min-1·100 mmHg-1 in CA subjects vs. 241 ± 21 ml·min-1·100 mmHg-1 in AA subjects, P < 0.001). FBF responses to exercise were also lower in AA subjects (interaction P < 0.001), whereas MAP responses did not differ between groups (e.g., ∆MAP at 24 kg: +19 ± 2 mmHg in CA subjects vs. +19 ± 2 mmHg in AA subjects, interaction P = 0.950). These findings indicate lower hyperemic responses to rhythmic handgrip exercise in AA men compared with CA men. NEW & NOTEWORTHY It is known that African-American individuals have heightened vasoconstriction and reduced vasodilation under resting conditions compared with Caucasian-American individuals. Here, we identified that the hyperemic response to moderate and high-intensity rhythmic handgrip exercise was lower in healthy young African-American men.


Black or African American , Brachial Artery/physiology , Exercise/physiology , Hand Strength , Hemodynamics , Muscle Contraction , Muscle, Skeletal/blood supply , White People , Age Factors , Blood Flow Velocity , Brachial Artery/diagnostic imaging , Forearm , Humans , Hyperemia/physiopathology , Male , Regional Blood Flow , Sex Factors , Ultrasonography, Doppler, Duplex , Young Adult
15.
Exp Physiol ; 103(10): 1425-1434, 2018 10.
Article En | MEDLINE | ID: mdl-30110509

NEW FINDINGS: What is the central question of this study? We aimed to examine leg vascular responses to brief periods of inactivity. What is the main finding and its importance? We demonstrate that a mere 10 min of sitting is sufficient to impair leg microvascular function (reactive hyperaemia). However, conduit artery vasodilatation (flow-mediated dilatation) was unaffected, indicating maintained macrovascular function. Interestingly, immobile supine rest also resulted in a reduction in microvascular function alone that was prevented when calf muscle contractions were performed. Collectively, these data highlight the susceptibility of the microcirculation to short periods of inactivity and the beneficial role of skeletal muscle contraction for vascular health. ABSTRACT: Prolonged sitting for 1-6 h has been shown to impair leg macrovascular [i.e. reduced flow-mediated dilatation (FMD)] and microvascular (i.e. reduced reactive hyperaemia) function. These impairments appear to be mediated through reductions in shear stress. Interestingly, a reduction in shear rate has been observed as early as 10 min into sitting. However, it is unknown whether this acute reduction in shear stress is sufficient to affect vascular function. Accordingly, we studied 18 young men and assessed popliteal artery FMD and reactive hyperaemia before (Baseline) and after (PostSit) a 10 min sitting period. Popliteal artery shear rate was significantly reduced during sitting (Baseline, 62 ± 35 s-1 ; 10 min sitting, 27 ± 13 s-1 ; P < 0.001). Macrovascular function was unaffected by 10 min of sitting (Baseline, 4.4 ± 2.1%; PostSit, 4.3 ± 2.3%; P = 0.97), but microvascular function was reduced (Baseline, 4852 ± 2261 a.u.; PostSit, 3522 ± 1872 a.u.; P = 0.02). In a subset of individuals, we extended the recovery period after sitting and demonstrated that resting shear rate and reactive hyperaemia responses remained low up to 1 h post-sitting (P < 0.001), whereas FMD was unchanged throughout (P = 0.99). Additionally, time control experiments were performed with participants in an immobile supine position, which demonstrated no change in macrovascular function (P = 0.94) but, unexpectedly, a reduction in microvascular function (P = 0.008). Importantly, when calf muscle contractions were performed during supine rest, reactive hyperaemia responses were maintained (P = 0.76), along with FMD (P = 0.88). These findings suggest that the leg microcirculation might be more vulnerable to short periods of inactivity, whereas conduit artery vasodilatation appears well maintained. Moreover, intermittent skeletal muscle contractions are beneficial for microvascular function.


Leg/physiopathology , Microcirculation/physiology , Adult , Blood Flow Velocity/physiology , Brachial Artery/physiology , Endothelium, Vascular/physiology , Exercise/physiology , Humans , Hyperemia/physiopathology , Male , Motor Activity/physiology , Muscle Contraction/physiology , Popliteal Artery/physiology , Posture/physiology , Regional Blood Flow/physiology , Stress, Mechanical , Vasodilation/physiology , Young Adult
...