Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(12): 102590, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244453

RESUMEN

Type A γ-aminobutyric acid receptors (GABAARs) represent a family of pentameric GABA-gated Cl-/HCO3- ion channels which mediate inhibitory transmission in the central nervous system. Cell surface expression of GABAARs, a prerequisite for their function, is dependent on the appropriate assembly of the receptor subunits and their transient interactions with molecular chaperones within the endoplasmic reticulum (ER) and Golgi apparatus. Here, we describe a highly conserved amino acid sequence within the extracellular N-terminal domain of the receptor subunits adjoining the first transmembrane domain as a region important for GABAAR processing within the ER. Modifications of this region in the α1, ß3, and γ2 subunits using insertion or site-directed mutagenesis impaired GABAAR trafficking to the cell surface in heterologous cell systems although they had no effect on the subunit assembly. We found that mutated receptors accumulated in the ER where they were shown to associate with chaperones calnexin, BiP, and Grp94. However, their surface expression was increased when ER-associated degradation or proteosome function was inhibited, while modulation of ER calcium stores had little effect. When compared to the wt, mutated receptors showed decreased interaction with calnexin, similar binding to BiP, and increased association with Grp94. Structural modeling of calnexin interaction with the wt or mutated GABAAR revealed that disruption in structure caused by mutations in the conserved region adjoining the first transmembrane domain may impair calnexin binding. Thus, this previously uncharacterized region plays an important role in intracellular processing of GABAARs at least in part by stabilizing their interaction with calnexin.


Asunto(s)
Proteínas Portadoras , Receptores de GABA-A , Animales , Ratones , Calnexina/genética , Calnexina/metabolismo , Espacio Extracelular/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Subunidades de Proteína/metabolismo
2.
Brain Neurosci Adv ; 3: 2398212819858249, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32166183

RESUMEN

γ-aminobutyric acid has become one of the most widely known neurotransmitter molecules in the brain over the last 50 years, recognised for its pivotal role in inhibiting neural excitability. It emerged from studies of crustacean muscle and neurons before its significance to the mammalian nervous system was appreciated. Now, after five decades of investigation, we know that most neurons are γ-aminobutyric-acid-sensitive, it is a cornerstone of neural physiology and dysfunction to γ-aminobutyric acid signalling is increasingly documented in a range of neurological diseases. In this review, we briefly chart the neurodevelopment of γ-aminobutyric acid and its two major receptor subtypes: the γ-aminobutyric acidA and γ-aminobutyric acidB receptors, starting from the humble invertebrate origins of being an 'interesting molecule' acting at a single γ-aminobutyric acid receptor type, to one of the brain's most important neurochemical components and vital drug targets for major therapeutic classes of drugs. We document the period of molecular cloning and the explosive influence this had on the field of neuroscience and pharmacology up to the present day and the production of atomic γ-aminobutyric acidA and γ-aminobutyric acidB receptor structures. γ-Aminobutyric acid is no longer a humble molecule but the instigator of rich and powerful signalling processes that are absolutely vital for healthy brain function.

3.
Neurochem Res ; 44(6): 1437-1445, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30284099

RESUMEN

A new N-methyl D aspartate neurotransmitter receptor interacting protein has been identified by yeast two-hybrid screening of a mouse brain cDNA library. C-terminal binding protein 1 (CtBP1) was shown to associate with the intracellular C-terminal regions of the N-methyl D aspartate receptor subunits GluN2A and GluN2D but not with GluN1-1a cytoplasmic C-terminal region. In yeast mating assays using a series of GluN2A C-terminal truncations, it was demonstrated that the CtBP1 binding domain was localized to GluN2A 1157-1382. The GluN2A binding domain was identified to lie within the CtBP1 161-224 region. CtBP1 co-immunoprecipitated with assembled GluN1/GluN2A receptors expressed in mammalian cells and also, in detergent extracts of adult mouse brain. Co-expression of CtBP1 with GluN1/GluN2A resulted in a significant decrease in receptor cell surface expression. The family of C-terminal binding proteins function primarily as transcriptional co-repressors. However, they are also known to modulate intracellular membrane trafficking mechanisms. Thus the results reported herein describe a putative role for CtBP1 in the regulation of cell surface N-methyl D aspartate receptor expression.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Oxidorreductasas de Alcohol/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Proteínas de Unión al ADN/inmunología , Células HEK293 , Humanos , Inmunoprecipitación , Masculino , Ratones Endogámicos BALB C , Proteínas del Tejido Nervioso/inmunología , Unión Proteica , Receptores de N-Metil-D-Aspartato/inmunología , Saccharomyces cerevisiae
4.
Mol Cell Neurosci ; 80: 134-147, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28300646

RESUMEN

Previous studies established that the kinesin adaptor proteins, TRAK1 and TRAK2, play an important role in mitochondrial transport in neurons. They link mitochondria to kinesin motor proteins via a TRAK acceptor protein in the mitochondrial outer membrane, the Rho GTPase, Miro. TRAKs also associate with enzyme, O-linked N-acetylglucosamine transferase (OGT), to form a quaternary, mitochondrial trafficking complex. A recent report suggested that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons whereas TRAK2 controls mitochondrial transport in dendrites. However, it is not clear whether the function of any of these proteins is exclusive to axons or dendrites and if their mechanisms of action are conserved between different neuronal populations and also, during maturation. Here, a comparative study was carried out into TRAK-mediated mitochondrial mobility in axons and dendrites of hippocampal and cortical neurons during maturation in vitro using a shRNA gene knockdown approach. It was found that in mature hippocampal and cortical neurons, TRAK1 predominantly mediates axonal mitochondrial transport whereas dendritic transport is mediated via TRAK2. In young, maturing neurons, TRAK1 and TRAK2 contribute similarly in mitochondrial transport in both axons and dendrites in both neuronal types. These findings demonstrate maturation regulation of mitochondrial transport which is conserved between at least two distinct neuronal subtypes.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transporte Axonal/fisiología , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Transporte Axonal/genética , Proteínas Portadoras/genética , Células Cultivadas , Corteza Cerebral/citología , Dendritas/genética , Homólogo 4 de la Proteína Discs Large , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Microscopía Confocal , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Sinaptofisina/metabolismo , Transfección , Proteínas tau/metabolismo
5.
J Neurosci Res ; 93(7): 1056-66, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25653102

RESUMEN

Neuronal function requires regulated anterograde and retrograde trafficking of mitochondria along microtubules by using the molecular motors kinesin and dynein. Previous work has established that trafficking kinesin proteins (TRAKs),TRAK1 and TRAK2, are kinesin adaptor proteins that link mitochondria to kinesin motor proteins via an acceptor protein in the mitochondrial outer membrane, etc. the Rho GTPase Miro. Recent studies have shown that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons by virtue of its binding to both kinesin and dynein motor proteins, whereas TRAK2 controls mitochondrial transport in dendrites resulting from its binding to dynein. This study further investigates the subcellular localization of TRAK1 and TRAK2 in primary cultures of hippocampal and cortical neurons by using both commercial antibodies and anti-TRAK1 and anti-TRAK2 antibodies raised in our own laboratory (in-house). Whereas TRAK1 was prevalently localized in axons of hippocampal and cortical neurons, TRAK2 was more prevalent in dendrites of hippocampal neurons. In cortical neurons, TRAK2 was equally distributed between axons and dendrites. Some qualitative differences were observed between commercial and in-house-generated antibody immunostaining.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/metabolismo , Corteza Cerebral/citología , Hipocampo/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Axones/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Dendritas/metabolismo , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Neuronas/citología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Transfección
6.
J Neurochem ; 133(6): 879-85, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25683482

RESUMEN

The function of amyloid precursor protein (APP) is unknown, although the discovery that it contributes to the regulation of surface expression of N-methyl-D-aspartate (NMDA) receptors has afforded new insights into its functional significance. Since APP is a member of a gene family that contains two other members, amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2), it is important to determine if the related APP proteins possess the same properties as APP with respect to their interactions with NMDA receptors. Following expression in mammalian cells, both APLP1 and APLP2 behaved similarly to APP in that they both co-immunoprecipitated with the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B, via interaction with the obligatory GluN1 subunit. Immunoprecipitations from detergent extracts of adult mammalian brain showed co-immunoprecipitation of APLP1 and APLP2 with GluN2A- and GluN2B-containing NMDA receptors. Furthermore, similarly to APP, APLP1 and APLP2 both enhanced GluN1/GluN2A and GluN1/GluN2B cell surface expression. Thus, all the three members of the APP gene family behave similarly in that they each contribute to the regulation of cell surface NMDA receptor homoeostasis. Amyloid precursor protein (APP) has been shown to associate with N-methyl-d-aspartate (NMDA) receptors and to enhance their cell surface expression. Here, we show that the other members of the APP family, APLP1 and APLP2, behave similarly to APP in that they both associate with assembled NMDA receptors in the endoplasmic reticulum via their interaction with the NMDA receptor subunit, GluN1 and, they enhance receptor cell surface expression. Alternative scenarios are depicted since it is to be determined if respective associations are direct.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Ratas , Ratas Sprague-Dawley , Transfección
7.
J Vis Exp ; (93): e52115, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25489750

RESUMEN

Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.


Asunto(s)
Técnicas de Cocultivo/métodos , Neuronas GABAérgicas/citología , Receptores de GABA-A/biosíntesis , Sinapsis/fisiología , Animales , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Femenino , Neuronas GABAérgicas/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Embarazo , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Potenciales Sinápticos , Ácido gamma-Aminobutírico/metabolismo
8.
Cell Rep ; 9(2): 712-27, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25310985

RESUMEN

The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity. Herein, we show that the level of Scribble1 is regulated in an activity-dependent manner and that Scribble1 controls the number of NMDARs at the plasma membrane. Notably, Scribble1 prevents GluN2A subunits from undergoing lysosomal trafficking and degradation by increasing their recycling to the plasma membrane following NMDAR activation. Finally, we show that a specific YxxR motif on Scribble1 controls these mechanisms through a direct interaction with AP2. Altogether, our findings define a molecular mechanism to control the levels of synaptic NMDARs via Scribble1 complex signaling.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Endosomas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Datos de Secuencia Molecular , Neuronas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteolisis , Ratas , Ratas Sprague-Dawley , Proteínas Supresoras de Tumor/química
9.
J Neurochem ; 130(4): 605-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25039566
10.
Neurochem Res ; 39(6): 992-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24122114

RESUMEN

γ-Aminobutyric acid type A (GABAA) receptor interacting factor-1 (GRIF-1) was originally discovered as a result of studies aiming to find the elusive GABAA receptor clustering protein. It was identified as a GABAA receptor associated protein by virtue of its specific interaction with the GABAA receptor ß2 subunit intracellular loop in a yeast two-hybrid screen of a rat brain cDNA library. Further work however, established that GRIF-1, now known as trafficking kinesin protein 2 (TRAK2), is a member of the TRAK family of kinesin adaptor proteins. A pivotal role for TRAK1 and TRAK2 in the transport of mitochondria is well recognized. Notwithstanding this progress, there is a body of evidence that still supports a role for TRAKs in the intracellular transport of GABAA receptors. This is critically reviewed in this article.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Receptores de GABA-A/metabolismo , Animales , Encéfalo/metabolismo , Ratones , Transporte de Proteínas , Ratas , Técnicas del Sistema de Dos Híbridos
11.
FEBS Lett ; 587(23): 3763-9, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24161670

RESUMEN

Understanding specific cargo distribution in differentiated cells is a major challenge. Trafficking kinesin proteins (TRAKs) are kinesin adaptors. They bind the cargo binding domain of kinesin-1 motor proteins forming a link between the motor and their cargoes. To refine the TRAK1/2 binding sites within the kinesin-1 cargo domain, rationally designed C-terminal truncations of KIF5A and KIF5C were generated and their co-association with TRAK1/2 determined by quantitative co-immunoprecipitations following co-expression in mammalian cells. Three contributory regions forming the TRAK2 binding site within KIF5A and KIF5C cargo binding domains were delineated. Differences were found between TRAK1/2 with respect to association with KIF5A.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Cinesinas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células HEK293 , Humanos , Cinesinas/química , Cinesinas/genética , Datos de Secuencia Molecular , Mutación , Ratas
12.
J Neurochem ; 126(5): 554-64, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23621516

RESUMEN

Neuropilin tolloid-like 1 (Neto1), is a CUB domain-containing transmembrane protein that was recently identified as a novel component of the NMDA receptor complex. Here, we have investigated the possible association of Neto1 with the amyloid precursor protein (APP)695/GluN1/GluN2A and APP695/GluN1/GluN2B NMDA receptor trafficking complexes that we have previously identified. Neto1(HA) was shown to co-immunoprecipitate with assembled NMDA receptors via GluN2A or GluN2B subunits; Neto1(HA) did not co-immunoprecipitate APP695(FLAG) . Co-immunoprecipitations from mammalian cells co-transfected with APP695(FLAG) , Neto1(HA) and GluN1/GluN2A or GluN1/GluN2B revealed that all four proteins co-exist within one macromolecular complex. Immunoprecipitations from native brain tissue similarly revealed the existence of a GluN1/GluN2A or GluN2B/APP/Neto1 complex. Neto1(HA) caused a reduction in the surface expression of both NMDA receptor subtypes, but had no effect on APP695(FLAG) - or PSD-95α(c-Myc) enhanced surface receptor expression. The Neto1 binding domain of GluN2A was mapped using GluN1/GluN2A chimeras and GluN2A truncation constructs. The extracellular GluN2A domain does not contribute to association with Neto1(HA) but deletion of the intracellular tail resulted in a loss of Neto-1(HA) co-immunoprecipitation which was paralleled by a loss of association between GluN2A and SAP102. Thus, Neto1 is concluded to be a component of APP/NMDA receptor trafficking complexes.


Asunto(s)
Precursor de Proteína beta-Amiloide/fisiología , Proteínas de la Membrana/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
14.
J Biol Chem ; 287(48): 40205-6, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23038255

RESUMEN

The year 2012 marks the 25th anniversary of the discovery of the Cys loop ligand-gated ion channel superfamily of neurotransmitter receptors. This minireview series celebrates this with a series of articles reviewing current information for each of the family members, nicotinic acetylcholine receptors, glycine receptors, GABA(A) receptors, serotonin-3 (5-HT(3)) receptors, and glutamate-gated chloride ion channels of proteasome invertebrate phyla.


Asunto(s)
Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando , Familia de Multigenes , Animales , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/química , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Humanos
15.
J Biol Chem ; 287(16): 13465-76, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22375001

RESUMEN

N-methyl-D-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149-1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Dominios Homologos src/fisiología , Animales , Sitios de Unión/fisiología , Detergentes/farmacología , Homólogo 4 de la Proteína Discs Large , Glutatión Transferasa/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Terciaria de Proteína , Ratas , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
16.
Neurosci Lett ; 515(2): 131-6, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22450047

RESUMEN

Two recent reports showed that amyloid precursor protein (APP) may contribute to postsynaptic mechanisms via the regulation of the surface trafficking of excitatory N-methyl-D-aspartate (NMDA) receptors. Here we have investigated the interactions and surface trafficking of NR1-1a/NR2A and NR1-1a/NR2B NMDA receptor subtypes with three APP mutations linked to familial Alzheimer's disease, APP695(Indiana), APP695(London) and APP695(Swedish). Flag-tagged mutated APP695s were generated and shown to be expressed at equivalent levels to wild-type APP695 in mammalian cells. Each APP mutant co-precipitated with NR1-1a/NR2A and NR1-1a/NR2B receptors following co-expression in mammalian cells. Further, as found for wild-type APP695, each enhanced NMDA receptor surface expression with no concomitant increase in total NR1-1a, NR2A or NR2B subunit expression. Thus these three familial APP mutations behave as wild-type APP695 with respect to their association with assembled NMDA receptors and their APP695-enhanced receptor cell surface trafficking.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Células HEK293 , Humanos , Mutación , Subunidades de Proteína/genética , Transporte de Proteínas/genética , Receptores de N-Metil-D-Aspartato/genética , Transfección
17.
J Biol Chem ; 286(20): 18079-92, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454691

RESUMEN

In neurons, the proper distribution of mitochondria is essential because of a requirement for high energy and calcium buffering during synaptic neurotransmission. The efficient, regulated transport of mitochondria along axons to synapses is therefore crucial for maintaining function. The trafficking kinesin protein (TRAK)/Milton family of proteins comprises kinesin adaptors that have been implicated in the neuronal trafficking of mitochondria via their association with the mitochondrial protein Miro and kinesin motors. In this study, we used gene silencing by targeted shRNAi and dominant negative approaches in conjunction with live imaging to investigate the contribution of endogenous TRAKs, TRAK1 and TRAK2, to the transport of mitochondria in axons of hippocampal pyramidal neurons. We report that both strategies resulted in impairing mitochondrial mobility in axonal processes. Differences were apparent in terms of the contribution of TRAK1 and TRAK2 to this transport because knockdown of TRAK1 but not TRAK2 impaired mitochondrial mobility, yet both TRAK1 and TRAK2 were shown to rescue transport impaired by TRAK1 gene knock-out. Thus, we demonstrate for the first time the pivotal contribution of the endogenous TRAK family of kinesin adaptors to the regulation of mitochondrial mobility.


Asunto(s)
Axones/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Animales , Transporte Biológico/fisiología , Proteínas Portadoras , Células Cultivadas , Técnicas de Silenciamiento del Gen , Mitocondrias/genética , Proteínas del Tejido Nervioso/genética , Células Piramidales/citología , Ratas
18.
Biochim Biophys Acta ; 1813(1): 269-81, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21034780

RESUMEN

Trafficking kinesin proteins (TRAKs) 1 and 2 are kinesin-associated proteins proposed to function in excitable tissues as adaptors in anterograde trafficking of cargoes including mitochondria. They are known to associate with N-acetylglucosamine transferase and the mitochondrial rho GTPase, Miro. We used confocal imaging, Förster resonance energy transfer and immunoprecipitations to investigate association between TRAKs1/2, N-acetylglucosamine transferase, the prototypic kinesin-1, KIF5C, and Miro. We demonstrate that in COS-7 cells, N-acetylglucosamine transferase, KIF5C and TRAKs1/2 co-distribute. Förster resonance energy transfer was observed between N-acetylglucosamine transferase and TRAKs1/2. Despite co-distributing with KIF5C and immunoprecipitations demonstrating a TRAK1/2, N-acetylglucosamine transferase and KIF5C ternary complex, no Förster resonance energy transfer was detected between N-acetylglucosamine transferase and KIF5C. KIF5C, N-acetylglucosamine transferase, TRAKs1/2 and Miro formed a quaternary complex. The presence of N-acteylglucosamine transferase partially prevented redistribution of mitochondria induced by trafficking proteins 1/2 and KIF5C. TRAK2 was a substrate for N-acetylglucosamine transferase with TRAK2 (S562) identified as a site of O-N-acetylglucosamine modification. These findings substantiate trafficking kinesin proteins as scaffolds for the formation of a multi-component complex involved in anterograde trafficking of mitochondria. They further suggest that O-glycosylation may regulate complex formation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Cinesinas/metabolismo , Mitocondrias/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Células COS , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Humanos , Immunoblotting , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Transporte de Proteínas , Ratas
19.
Proc Natl Acad Sci U S A ; 107(45): 19561-6, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20974938

RESUMEN

The relative content of NR2 subunits in the NMDA receptor confers specific signaling properties and plasticity to synapses. However, the mechanisms that dynamically govern the retention of synaptic NMDARs, in particular 2A-NMDARs, remain poorly understood. Here, we investigate the dynamic interaction between NR2 C termini and proteins containing PSD-95/Discs-large/ZO-1 homology (PDZ) scaffold proteins at the single molecule level by using high-resolution imaging. We report that a biomimetic divalent competing ligand, mimicking the last 15 amino acids of NR2A C terminus, specifically and efficiently disrupts the interaction between 2A-NMDARs, but not 2B-NMDARs, and PDZ proteins on the time scale of minutes. Furthermore, displacing 2A-NMDARs out of synapses lead to a compensatory increase in synaptic NR2B-NMDARs, providing functional evidence that the anchoring mechanism of 2A- or 2B-NMDARs is different. These data reveal an unexpected role of the NR2 subunit divalent arrangement in providing specific anchoring within synapses, highlighting the need to study such dynamic interactions in native conditions.


Asunto(s)
Dominios PDZ , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/química , Animales , Cinética , Plasticidad Neuronal , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Unión Proteica , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...