Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 109(21): 3436-3455.e9, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34508667

RESUMEN

An inhibitory extracellular milieu and neuron-intrinsic processes prevent axons from regenerating in the adult central nervous system (CNS). Here we show how the two aspects are interwoven. Genetic loss-of-function experiments determine that the small GTPase RhoA relays extracellular inhibitory signals to the cytoskeleton by adapting mechanisms set in place during neuronal polarization. In response to extracellular inhibitors, neuronal RhoA restricts axon regeneration by activating myosin II to compact actin and, thereby, restrain microtubule protrusion. However, astrocytic RhoA restricts injury-induced astrogliosis through myosin II independent of microtubules by activating Yes-activated protein (YAP) signaling. Cell-type-specific deletion in spinal-cord-injured mice shows that neuronal RhoA activation prevents axon regeneration, whereas astrocytic RhoA is beneficial for regenerating axons. These data demonstrate how extracellular inhibitors regulate axon regeneration, shed light on the capacity of reactive astrocytes to be growth inhibitory after CNS injury, and reveal cell-specific RhoA targeting as a promising therapeutic avenue.


Asunto(s)
Actinas , Axones , Enfermedades del Sistema Nervioso Central , Regeneración Nerviosa , Proteína de Unión al GTP rhoA , Actinas/metabolismo , Animales , Astrocitos/metabolismo , Axones/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Ratones , Regeneración Nerviosa/fisiología , Proteína de Unión al GTP rhoA/metabolismo
2.
Curr Biol ; 29(22): 3874-3886.e9, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679934

RESUMEN

The specification of an axon and its subsequent outgrowth are key steps during neuronal polarization, a prerequisite to wire the brain. The Rho-guanosine triphosphatase (GTPase) RhoA is believed to be a central player in these processes. However, its physiological role has remained undefined. Here, genetic loss- and gain-of-function experiments combined with time-lapse microscopy, cell culture, and in vivo analysis show that RhoA is not involved in axon specification but confines the initiation of neuronal polarization and axon outgrowth during development. Biochemical analysis and super-resolution microscopy together with molecular and pharmacological manipulations reveal that RhoA restrains axon growth by activating myosin-II-mediated actin arc formation in the growth cone to prevent microtubules from protruding toward the leading edge. Through this mechanism, RhoA regulates the duration of axon growth and pause phases, thus controlling the tightly timed extension of developing axons. Thereby, this work unravels physiologically relevant players coordinating actin-microtubule interactions during axon growth.


Asunto(s)
Axones/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Axones/fisiología , Encéfalo/embriología , Encéfalo/metabolismo , Polaridad Celular/fisiología , Femenino , Mutación con Ganancia de Función/genética , Conos de Crecimiento/metabolismo , Mutación con Pérdida de Función/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Proteína de Unión al GTP rhoA/fisiología
3.
Neuron ; 103(6): 1073-1085.e6, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31400829

RESUMEN

Injured axons fail to regenerate in the adult CNS, which contrasts with their vigorous growth during embryonic development. We explored the potential of re-initiating axon extension after injury by reactivating the molecular mechanisms that drive morphogenetic transformation of neurons during development. Genetic loss- and gain-of-function experiments followed by time-lapse microscopy, in vivo imaging, and whole-mount analysis show that axon regeneration is fueled by elevated actin turnover. Actin depolymerizing factor (ADF)/cofilin controls actin turnover to sustain axon regeneration after spinal cord injury through its actin-severing activity. This pinpoints ADF/cofilin as a key regulator of axon growth competence, irrespective of developmental stage. These findings reveal the central role of actin dynamics regulation in this process and elucidate a core mechanism underlying axon growth after CNS trauma. Thereby, neurons maintain the capacity to stimulate developmental programs during adult life, expanding their potential for plasticity. Thus, actin turnover is a key process for future regenerative interventions.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Cofilina 1/genética , Cofilina 2/genética , Destrina/genética , Conos de Crecimiento/patología , Regeneración Nerviosa/genética , Traumatismos de la Médula Espinal/genética , Animales , Axones/patología , Cofilina 1/metabolismo , Cofilina 2/metabolismo , Destrina/metabolismo , Conos de Crecimiento/metabolismo , Microscopía Intravital , Ratones , Microscopía Confocal , Neuronas/metabolismo , Neuronas/patología , Ratas , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Imagen de Lapso de Tiempo
4.
J Biol Chem ; 294(11): 3853-3871, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30662006

RESUMEN

The nonlysosomal glucosylceramidase ß2 (GBA2) catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP), autosomal-recessive cerebellar ataxia (ARCA), and the Marinesco-Sjögren-like syndrome. However, the underlying molecular mechanisms are ill-defined. Here, using biochemistry, immunohistochemistry, structural modeling, and mouse genetics, we demonstrate that all but one of the spastic gait locus #46 (SPG46)-connected mutations cause a loss of GBA2 activity. We demonstrate that GBA2 proteins form oligomeric complexes and that protein-protein interactions are perturbed by some of these mutations. To study the pathogenesis of GBA2-related HSP and ARCA in vivo, we investigated GBA2-KO mice as a mammalian model system. However, these mice exhibited a high phenotypic variance and did not fully resemble the human phenotype, suggesting that mouse and human GBA2 differ in function. Whereas some GBA2-KO mice displayed a strong locomotor defect, others displayed only mild alterations of the gait pattern and no signs of cerebellar defects. On a cellular level, inhibition of GBA2 activity in isolated cerebellar neurons dramatically affected F-actin dynamics and reduced neurite outgrowth, which has been associated with the development of neurological disorders. Our results shed light on the molecular mechanism underlying the pathogenesis of GBA2-related HSP and ARCA and reveal species-specific differences in GBA2 function in vivo.


Asunto(s)
Ataxia Cerebelosa/metabolismo , Locomoción/genética , Mutación con Pérdida de Función , Paraplejía Espástica Hereditaria/metabolismo , beta-Glucosidasa/metabolismo , Animales , Biocatálisis , Ataxia Cerebelosa/genética , Glucosilceramidasa , Humanos , Ratones , Ratones Noqueados , Paraplejía Espástica Hereditaria/genética , Especificidad de la Especie , beta-Glucosidasa/antagonistas & inhibidores , beta-Glucosidasa/deficiencia , beta-Glucosidasa/genética
5.
Mol Brain ; 7: 86, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25406759

RESUMEN

BACKGROUND: CNS axon regeneration inhibitors such as Nogo and CSPGs (Chondroitin Sulfate Proteoglycans) are major extrinsic factors limiting outgrowth of severed nerve fibers. However, knowledge on intracellular signaling cascades and gene expression programs activated by these inhibitors in neurons is sparse. Herein we studied intracellular signaling cascades activated by total myelin, Nogo and CSPGs in primary mouse CNS neurons. RESULTS: Total myelin, Nogo and CSPGs stimulated gene expression activity of the serum response factor (SRF), a central gene regulator of immediate early (IEG) and actin cytoskeletal gene transcription. As demonstrated by pharmacological interference, SRF-mediated IEG activation by myelin, Nogo or CSPGs depended on MAP kinase, to a lesser extent on Rho-GTPase but not on PKA signaling. Stimulation of neurons with all three axon growth inhibitors activated the MAP kinase ERK. In addition to ERK activation, myelin activated the IEG c-Fos, an important checkpoint of neuronal survival vs. apoptosis. Employing Srf deficient neurons revealed that myelin-induced IEG activation requires SRF. This suggests an SRF function in mediating neuronal signaling evoked by axon regeneration associated inhibitors. Besides being a signaling target of axon growth inhibitors, we show that constitutively-active SRF-VP16 can be employed to circumvent neurite growth inhibition imposed by myelin, Nogo and CSPGs. CONCLUSION: In sum, our data demonstrate that axon regeneration inhibitors such as Nogo trigger gene expression programs including an SRF-dependent IEG response via MAP kinases and Rho-GTPases.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/fisiología , Genes Inmediatos-Precoces , Sistema de Señalización de MAP Quinasas/genética , Regeneración Nerviosa , Factor de Respuesta Sérica/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Axones/efectos de los fármacos , Proteoglicanos Tipo Condroitín Sulfato/farmacología , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Mielina/farmacología , Vaina de Mielina/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Proteínas Nogo , Proteínas Proto-Oncogénicas c-fos/metabolismo
6.
Nat Commun ; 5: 4827, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25219969

RESUMEN

Microtubule dynamics in neurons play critical roles in physiology, injury and disease and determine microtubule orientation, the cell biological correlate of neurite polarization. Several microtubule binding proteins, including end-binding protein 3 (EB3), specifically bind to the growing plus tip of microtubules. In the past, fluorescently tagged end-binding proteins have revealed microtubule dynamics in vitro and in non-mammalian model organisms. Here, we devise an imaging assay based on transgenic mice expressing yellow fluorescent protein-tagged EB3 to study microtubules in intact mammalian neurites. Our approach allows measurement of microtubule dynamics in vivo and ex vivo in peripheral nervous system and central nervous system neurites under physiological conditions and after exposure to microtubule-modifying drugs. We find an increase in dynamic microtubules after injury and in neurodegenerative disease states, before axons show morphological indications of degeneration or regrowth. Thus increased microtubule dynamics might serve as a general indicator of neurite remodelling in health and disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Bioensayo , Microtúbulos/ultraestructura , Imagen Molecular/métodos , Neuronas/ultraestructura , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Polaridad Celular , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Cultivo Primario de Células , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Grabación en Video
7.
J Neurosci ; 33(48): 18836-48, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24285890

RESUMEN

Axonal injury generates growth inert retraction bulbs with dynamic cytoskeletal properties that are severely compromised. Conversion of "frozen" retraction bulbs into actively progressing growth cones is a major aim in axon regeneration. Here we report that murine serum response factor (SRF), a gene regulator linked to the actin cytoskeleton, modulates growth cone actin dynamics during axon regeneration. In regeneration-competent facial motoneurons, Srf deletion inhibited axonal regeneration. In wild-type mice after nerve injury, SRF translocated from the nucleus to the cytoplasm, suggesting a cytoplasmic SRF function in axonal regeneration. Indeed, adenoviral overexpression of cytoplasmic SRF (SRF-ΔNLS-GFP) stimulated axonal sprouting and facial nerve regeneration in vivo. In primary central and peripheral neurons, SRF-ΔNLS-GFP stimulated neurite outgrowth, branch formation, and growth cone morphology. Furthermore, we uncovered a link between SRF and the actin-severing factor cofilin during axonal regeneration in vivo. Facial nerve axotomy increased the total cofilin abundance and also nuclear localization of phosphorylated cofilin in a subpopulation of lesioned motoneurons. This cytoplasmic-to-nucleus translocation of P-cofilin upon axotomy was reduced in motoneurons expressing SRF-ΔNLS-GFP. Finally, we demonstrate that cytoplasmic SRF and cofilin formed a reciprocal regulatory unit. Overexpression of cytoplasmic SRF reduced cofilin phosphorylation and vice versa: overexpression of cofilin inhibited SRF phosphorylation. Therefore, a regulatory loop consisting of SRF and cofilin might take part in reactivating actin dynamics in growth-inert retraction bulbs and facilitating axon regeneration.


Asunto(s)
Factores Despolimerizantes de la Actina/fisiología , Axones/efectos de los fármacos , Citoplasma/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Factor de Respuesta Sérica/farmacología , Actinas/metabolismo , Animales , Axotomía , Citoplasma/efectos de los fármacos , Nervio Facial/fisiología , Femenino , Proteínas Fluorescentes Verdes , Masculino , Ratones , Nervios Periféricos/citología , Nervios Periféricos/efectos de los fármacos , Fosforilación , Reacción en Cadena de la Polimerasa , Fracciones Subcelulares/metabolismo
8.
Neuron ; 76(6): 1091-107, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23259946

RESUMEN

Neurites are the characteristic structural element of neurons that will initiate brain connectivity and elaborate information. Early in development, neurons are spherical cells but this symmetry is broken through the initial formation of neurites. This fundamental step is thought to rely on actin and microtubule dynamics. However, it is unclear which aspects of the complex actin behavior control neuritogenesis and which molecular mechanisms are involved. Here, we demonstrate that augmented actin retrograde flow and protrusion dynamics facilitate neurite formation. Our data indicate that a single family of actin regulatory proteins, ADF/Cofilin, provides the required control of actin retrograde flow and dynamics to form neurites. In particular, the F-actin severing activity of ADF/Cofilin organizes space for the protrusion and bundling of microtubules, the backbone of neurites. Our data reveal how ADF/Cofilin organizes the cytoskeleton to drive actin retrograde flow and thus break the spherical shape of neurons.


Asunto(s)
Factores Despolimerizantes de la Actina/fisiología , Actinas/metabolismo , Forma de la Célula/fisiología , Corteza Cerebral/embriología , Destrina/fisiología , Conos de Crecimiento/metabolismo , Neuritas/metabolismo , Animales , Transporte Biológico , Procesos de Crecimiento Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Hipocampo/citología , Hipocampo/embriología , Técnicas In Vitro , Ratones , Ratones Noqueados , Microtúbulos/fisiología , Neurogénesis/fisiología
9.
J Neuroinflammation ; 9: 78, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22537405

RESUMEN

BACKGROUND: The transcription factor SRF (serum response factor) mediates neuronal survival in vitro. However, data available so far suggest that SRF is largely dispensable for neuron survival during physiological brain function. FINDINGS: Here, we demonstrate that upon neuronal injury, that is facial nerve transection, constitutively-active SRF-VP16 enhances motorneuron survival. SRF-VP16 suppressed active caspase 3 abundance in vitro and enhanced neuron survival upon camptothecin induced apoptosis. Following nerve fiber injury in vitro, SRF-VP16 improved survival of neurons and re-growth of severed neurites. Further, SRF-VP16 enhanced immune responses (that is microglia and T cell activation) associated with neuronal injury in vivo. Genome-wide transcriptomics identified target genes associated with axonal injury and modulated by SRF-VP16. CONCLUSION: In sum, this is a first report describing a neuronal injury-related survival function for SRF.


Asunto(s)
Axones/patología , Traumatismos del Nervio Facial/patología , Neuronas/patología , Traumatismos de los Nervios Periféricos/patología , Factor de Respuesta Sérica/fisiología , Animales , Axones/fisiología , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Traumatismos del Nervio Facial/genética , Ratones , Ratones Noqueados , Neuronas/fisiología , Traumatismos de los Nervios Periféricos/genética , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética
10.
J Neurosci ; 29(14): 4512-8, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19357276

RESUMEN

Neuronal motility relies on actin treadmilling. In addition to regulating cytoskeletal dynamics in the cytoplasm, actin modulates nuclear gene expression. We present a hitherto unappreciated cross talk of actin signaling with gene expression governing neuronal motility. Toward this end, we used a novel approach using mutant actins either favoring (G15S) or inhibiting (R62D) F-actin assembly. Overexpressing these mutant actins in mouse hippocampal neurons not only modulated growth-cone function but also neurite elongation, which was ambiguous by traditional pharmacological interference. G15S actin enhanced neurite outgrowth and filopodia number. In contrast, R62D reduced neurite length and impaired growth-cone filopodia formation. Growth-cone collapse induced by ephrin-As, a family of repulsive axon guidance molecules, is impaired upon R62D expression, resulting in perseverance of ring-shaped F-actin filaments. R62D-induced phenotypes strongly resemble neurons lacking SRF (Serum Response Factor). SRF controls gene transcription of various actin isoforms (e.g., Actb, Acta1) and actin-binding proteins (e.g., Gsn) and is the archetypical transcription factor to study actin interplay with transcription. We show that neuronal motility evoked by these actin mutants requires SRF activity. Further, constitutively active SRF partially rescues R62D-induced phenotypes. Conversely, actin signaling regulates neuronal SRF-mediated gene expression. Notably, a nucleus-resident actin (R62D(NLS)) also regulates SRF's transcriptional activity. Moreover, R62D(NLS) decreases neuronal motility similar to the cytoplasmic R62D actin mutant although R62D(NLS) has no access to cytoplasmic actin dynamics. Thus, herein we provide first evidence that neuronal motility not only depends on cytoplasmic actin dynamics but also on the availability of actin to modulate nuclear functions such as gene transcription.


Asunto(s)
Actinas/fisiología , Movimiento Celular/fisiología , Núcleo Celular/fisiología , Neuronas/fisiología , Factor de Respuesta Sérica/fisiología , Transcripción Genética/fisiología , Actinas/ultraestructura , Animales , Núcleo Celular/ultraestructura , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Ratones , Mutación , Neuronas/ultraestructura , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética
11.
Nat Neurosci ; 12(4): 418-27, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19270689

RESUMEN

In neurons, serum response factor (SRF)-directed transcription regulates migration, axon pathfinding and synapse function. We found that forebrain-specific, neuron-restricted SRF ablation in mice elevated oligodendrocyte precursors while inhibiting terminal oligodendrocyte differentiation. Myelin gene and protein expression were downregulated and we observed a lack of oligodendrocytes in mixed neuron/glia and oligodendrocyte-enriched cultures derived from Srf(-/-) mutants. Ultrastructural inspection revealed myelination defects and axonal degeneration in Srf(-/-) mutants. Consistent with our finding that neuronal SRF depletion impaired oligodendrocyte fate in a non-cell autonomous manner, neuron-restricted expression of constitutively active SRF-VP16 affected neighboring oligodendrocyte maturation. Genome-wide transcriptomics identified candidate genes for paracrine regulation of oligodendrocyte development, including connective tissue growth factor (CTGF), whose expression is repressed by SRF. Adenovirus-mediated CTGF expression in vivo revealed that CTGF blocks excessive oligodendrocyte differentiation. In vitro, CTGF-mediated inhibition of oligodendrocyte maturation involved sequestration and thereby counteraction of insulin growth factor 1-stimulated oligodendrocyte differentiation.


Asunto(s)
Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Comunicación Paracrina/fisiología , Factor de Respuesta Sérica/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/ultraestructura , Encéfalo/citología , Encéfalo/ultraestructura , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo/métodos , Factor de Crecimiento del Tejido Conjuntivo/genética , Embrión de Mamíferos , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Noqueados , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/genética , Neuroglía/fisiología , Neuronas/ultraestructura , Oligodendroglía/metabolismo , Comunicación Paracrina/genética , Factor de Respuesta Sérica/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...