Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 7(11): 1419-1436, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749310

RESUMEN

Small animals do not replicate the severity of the human foreign-body response (FBR) to implants. Here we show that the FBR can be driven by forces generated at the implant surface that, owing to allometric scaling, increase exponentially with body size. We found that the human FBR is mediated by immune-cell-specific RAC2 mechanotransduction signalling, independently of the chemistry and mechanical properties of the implant, and that a pathological FBR that is human-like at the molecular, cellular and tissue levels can be induced in mice via the application of human-tissue-scale forces through a vibrating silicone implant. FBRs to such elevated extrinsic forces in the mice were also mediated by the activation of Rac2 signalling in a subpopulation of mechanoresponsive myeloid cells, which could be substantially reduced via the pharmacological or genetic inhibition of Rac2. Our findings provide an explanation for the stark differences in FBRs observed in small animals and humans, and have implications for the design and safety of implantable devices.


Asunto(s)
Reacción a Cuerpo Extraño , Mecanotransducción Celular , Ratones , Humanos , Animales , Prótesis e Implantes , Células Mieloides/patología , Transducción de Señal
2.
J Control Release ; 308: 232-239, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31299261

RESUMEN

Chronic wounds remain a significant burden to both the healthcare system and individual patients, indicating an urgent need for new interventions. Deferoxamine (DFO), an iron-chelating agent clinically used to treat iron toxicity, has been shown to reduce oxidative stress and increase hypoxia-inducible factor-1 alpha (HIF-1α) activation, thereby promoting neovascularization and enhancing regeneration in chronic wounds. However due to its short half-life and adverse side effects associated with systemic absorption, there is a pressing need for targeted DFO delivery. We recently published a preclinical proof of concept drug delivery system (TDDS) which showed that transdermally applied DFO is effective in improving chronic wound healing. Here we present an enhanced TDDS (eTDDS) comprised exclusively of FDA-compliant constituents to optimize drug release and expedite clinical translation. We evaluate the eTDDS to the original TDDS and compare this with other commonly used delivery methods including DFO drip-on and polymer spray applications. The eTDDS displayed excellent physicochemical characteristics and markedly improved DFO delivery into human skin when compared to other topical application techniques. We demonstrate an accelerated wound healing response with the eTDDS treatment resulting in significantly increased wound vascularity, dermal thickness, collagen deposition and tensile strength. Together, these findings highlight the immediate clinical potential of DFO eTDDS to treating diabetic wounds. Further, the topical drug delivery platform has important implications for targeted pharmacologic therapy of a wide range of cutaneous diseases.


Asunto(s)
Deferoxamina/administración & dosificación , Sistemas de Liberación de Medicamentos , Sideróforos/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Administración Cutánea , Animales , Colágeno/metabolismo , Deferoxamina/farmacología , Liberación de Fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Sideróforos/farmacología , Piel/efectos de los fármacos , Piel/patología
3.
Tissue Eng Part A ; 25(1-2): 44-54, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29644938

RESUMEN

In diabetes-associated chronic wounds, the normal response to hypoxia is impaired and many cellular processes involved in wound healing are hindered. Central to the hypoxia response is hypoxia-inducible factor-1α (HIF-1α), which activates multiple factors that enhance wound healing by promoting cellular motility and proliferation, new vessel formation, and re-epithelialization. Prolyl hydroxylase domain-containing protein 2 (PHD2) regulates HIF-1α activity by targeting it for degradation under normoxia. HIF-1α also upregulates microRNA miR-210, which in turn regulates proteins involved in cell cycle control, DNA repair, and mitochondrial respiration in ways that are antagonistic to wound repair. We have identified a highly potent short synthetic hairpin RNA (sshRNA) that inhibits expression of PHD2 and an antisense oligonucleotide (antimiR) that inhibits miR-210. Both oligonucleotides were chemically modified for improved biostability and to mitigate potential immunostimulatory effects. Using the sshRNA to silence PHD2 transcripts stabilizes HIF-1α and, in combination with the antimiR targeting miR-210, increases proliferation and migration of keratinocytes in vitro. To assess activity and delivery in an impaired wound healing model in diabetic mice, PHD2-targeting sshRNAs and miR-210 antimiRs both alone and in combination were formulated for local delivery to wounds using layer-by-layer (LbL) technology. LbL nanofabrication was applied to incorporate sshRNA into a thin polymer coating on a Tegaderm mesh. This coating gradually degrades under physiological conditions, releasing sshRNA and antimiR for sustained cellular uptake. Formulated treatments were applied directly to splinted full-thickness excisional wounds in db/db mice. Cellular uptake was confirmed using fluorescent sshRNA. Wounds treated with a single application of PHD2 sshRNA or antimiR-210 closed 4 days faster than untreated wounds, and wounds treated with both oligonucleotides closed on average 4.75 days faster. Markers for neovascularization and cell proliferation (CD31 and Ki67, respectively) were increased in the wound area following treatment, and vascular endothelial growth factor (VEGF) was increased in sshRNA-treated wounds. Our results suggest that silencing of PHD2 and miR-210 either together or separately by localized delivery of sshRNAs and antimiRs is a promising approach for the treatment of chronic wounds, with the potential for rapid clinical translation.


Asunto(s)
Diabetes Mellitus Experimental , Angiopatías Diabéticas , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , MicroARNs/antagonistas & inhibidores , Oligonucleótidos Antisentido/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Células 3T3 NIH , Oligonucleótidos Antisentido/genética , Cicatrización de Heridas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...