Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomech Model Mechanobiol ; 14(6): 1349-61, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25943772

RESUMEN

In this work, we consider the blood fluid-dynamics in the ascending aorta in presence of a normally functioning bicuspid aortic valve (BAV). In particular, we perform an unsteady finite element study in real geometries with physiological velocity boundary conditions at the inlet to assess the effect of the inclusion of the leaflets on the fluid-dynamic abnormalities characterizing BAV cases. To this aim, we perform a comparison in two geometries (a dilated and a non-dilated ones) among three scenarios which are built up for each geometry: BAV without leaflets, BAV with leaflets, and tricuspid case with leaflets. For each case, we compute four indices quantifying flow asymmetry, reversal flows, helical patterns, and wall shear stresses. Our results show that the inclusion of the leaflets increases the fluid-dynamics abnormalities, especially for the non-dilated configuration, which presents a greater increment of the indices. In particular, we observe that the values of the time-averaged wall shear stress and of the systolic jet asymmetry increase by approximatively 100 and 40%, respectively, when considering the leaflets.


Asunto(s)
Aorta/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Hemorreología , Válvula Mitral/fisiología , Modelos Cardiovasculares , Animales , Fuerza Compresiva/fisiología , Simulación por Computador , Módulo de Elasticidad/fisiología , Humanos , Resistencia al Corte/fisiología , Estrés Mecánico , Resistencia a la Tracción/fisiología
2.
Interface Focus ; 1(3): 384-95, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22670208

RESUMEN

We present the development and testing of a semi-automated tool to support the diagnosis of left ventricle (LV) dysfunctions from cardiac magnetic resonance (CMR). CMR short-axis images of the LVs were obtained in 15 patients and processed to detect endocardial and epicardial contours and compute volume, mass and regional wall motion (WM). Results were compared with those obtained from manual tracing by an expert cardiologist. Nearest neighbour tracking and finite-element theory were merged to calculate local myocardial strains and torsion. The method was tested on a virtual phantom, on a healthy LV and on two ischaemic LVs with different severity of the pathology. Automated analysis of CMR data was feasible in 13/15 patients: computed LV volumes and wall mass correlated well with manually extracted data. The detection of regional WM abnormalities showed good sensitivity (77.8%), specificity (85.1%) and accuracy (82%). On the virtual phantom, computed local strains differed by less than 14 per cent from the results of commercial finite-element solver. Strain calculation on the healthy LV showed uniform and synchronized circumferential strains, with peak shortening of about 20 per cent at end systole, progressively higher systolic wall thickening going from base to apex, and a 10° torsion. In the two pathological LVs, synchronicity and homogeneity were partially lost, anomalies being more evident for the more severely injured LV. Moreover, LV torsion was dramatically reduced. Preliminary testing confirmed the validity of our approach, which allowed for the fast analysis of LV function, even though future improvements are possible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA