Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(24): 21474-21484, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360452

RESUMEN

From a circular economy perspective, one-pot strategies for the isolation of cellulose nanomaterials at a high yield and with multifunctional properties are attractive. Here, the effects of lignin content (bleached vs unbleached softwood kraft pulp) and sulfuric acid concentration on the properties of crystalline lignocellulose isolates and their films are explored. Hydrolysis at 58 wt % sulfuric acid resulted in both cellulose nanocrystals (CNCs) and microcrystalline cellulose at a relatively high yield (>55%), whereas hydrolysis at 64 wt % gave CNCs at a lower yield (<20%). CNCs from 58 wt % hydrolysis were more polydisperse and had a higher average aspect ratio (1.5-2×), a lower surface charge (2×), and a higher shear viscosity (100-1000×). Hydrolysis of unbleached pulp additionally yielded spherical nanoparticles (NPs) that were <50 nm in diameter and identified as lignin by nanoscale Fourier transform infrared spectroscopy and IR imaging. Chiral nematic self-organization was observed in films from CNCs isolated at 64 wt % but not from the more heterogeneous CNC qualities produced at 58 wt %. All films degraded to some extent under simulated sunlight trials, but these effects were less pronounced in lignin-NP-containing films, suggesting a protective feature, but the hemicellulose content and CNC crystallinity may be implicated as well. Finally, heterogeneous CNC compositions obtained at a high yield and with improved resource efficiency are suggested for specific nanocellulose uses, for instance, as thickeners or reinforcing fillers, representing a step toward the development of application-tailored CNC grades.

2.
Carbohydr Polym ; 314: 120923, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173022

RESUMEN

To commercialize a biomedical product as a medical device, reproducibility of production and time-stability are important parameters. Studies of reproducibility are lacking in the literature. Additionally, chemical pre-treatments of wood fibres to produce highly fibrillated cellulose nanofibrils (CNF) seem to be demanding in terms of production efficiency, being a bottleneck for industrial upscaling. In this study, we evaluated the effect of pH on the dewatering time and washing steps of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO)-mediated oxidized wood fibres when applying 3.8 mmol NaClO/g cellulose. The results indicate that the method does not affect the carboxylation of the nanocelluloses, and levels of approximately 1390 µmol/g were obtained with good reproducibility. The washing time of a Low-pH sample was reduced to 1/5 of the time required for washing a Control sample. Additionally, the stability of the CNF samples was assessed over 10 months and changes were quantified, the most pronounced were the increase of potential residual fibre aggregates, reduction of viscosity and increase of carboxylic acid content. The cytotoxicity and skin irritation potential were not affected by the detected differences between the Control and Low-pH samples. Importantly, the antibacterial effect of the carboxylated CNFs against S. aureus and P. aeruginosa was confirmed.


Asunto(s)
Staphylococcus aureus , Cicatrización de Heridas , Reproducibilidad de los Resultados , Hidrogeles/química , Celulosa/farmacología , Celulosa/química , Pseudomonas aeruginosa
3.
Biomacromolecules ; 22(7): 2779-2789, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34185505

RESUMEN

Cellulose nanofibrils (CNFs) were obtained by applying a chemical pretreatment consisting of autoclaving the pulp fibers in sodium hydroxide, combined with 2,2,6,6-tetramethylpiperidinyl-1-oxyl-mediated oxidation. Three levels of sodium hypochlorite were applied (2.5, 3.8, and 6.0 mmol/g) to obtain CNF qualities (CNF_2.5, CNF_3.8, and CNF_6.0) with varying content of carboxyl groups, that is, 1036, 1285, and 1593 µmol/g cellulose. The cytotoxicity and skin irritation potential (indirect tests) of the CNFs were determined according to standardized in vitro testing for medical devices. We here demonstrate that autoclaving (121 °C, 20 min), which was used to sterilize the gels, caused a modification of the CNF characteristics. This was confirmed by a reduction in the viscosity of the gels, a morphological change of the nanofibrils, by an increase of the ultraviolet-visible absorbance maxima at 250 nm, reduction of the absolute zeta potential, and by an increase in aldehyde content and reducing sugars after autoclaving. Fourier-transform infrared spectroscopy and wide-angle X-ray scattering complemented an extensive characterization of the CNF gels, before and after autoclaving. The antibacterial properties of autoclaved carboxylated CNFs were demonstrated in vitro (bacterial survival and swimming assays) on Pseudomonas aeruginosa and Staphylococcus aureus. Importantly, a mouse in vivo surgical-site infection model on S. aureus revealed that CNF_3.8 showed pronounced antibacterial effect and performed as good as the antiseptic Prontosan wound gel.


Asunto(s)
Nanofibras , Animales , Antibacterianos/farmacología , Celulosa , Ratones , Staphylococcus aureus , Madera
4.
Carbohydr Polym ; 260: 117345, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712116

RESUMEN

The biotechnological applications of cellulose nanocrystals (CNCs) continue to grow due to their sustainable nature, impressive mechanical, rheological, and emulsifying properties, upscaled production capacity, and compatibility with other materials, such as protein and polysaccharides. In this study, hydrogels from CNCs and pectin, a plant cell wall polysaccharide broadly used in food and pharma, were produced by calcium ion-mediated internal ionotropic gelation (IG). In the absence of pectin, a minimum of 4 wt% CNC was needed to produce self-supporting gels by internal IG, whereas the addition of pectin at 0.5 wt% enabled hydrogel formation at CNC contents as low as 0.5 wt%. Experimental data indicate that CNCs and pectin interact to give robust and self-supporting hydrogels at solid contents below 2.5 %. Potential applications of these gels could be as carriers for controlled release, scaffolds for cell growth, or wherever else distinct and porous network morphologies are required.


Asunto(s)
Celulosa/química , Hidrogeles/química , Nanopartículas/química , Pectinas/química , Fuerza Compresiva , Dispersión del Ángulo Pequeño , Temperatura , Difracción de Rayos X
5.
Planta ; 250(1): 163-171, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30953149

RESUMEN

MAIN CONCLUSION: Glucomannan was more strongly oriented, in line with the orientation of cellulose, than the xylan in both compression wood and normal wood of Chinese fir. Lignin in compression wood was somewhat more oriented in the direction of the cellulose microfibrils than in normal wood. The structural organization in compression wood (CW) is quite different from that in normal wood (NW). To shed more light on the structural organization of the polymers in plant cell walls, Fourier Transform Infrared (FTIR) microscopy in transmission mode has been used to compare the S2-dominated mean orientation of wood polymers in CW with that in NW from Chinese fir (Cunninghamia lanceolata). Polarized FTIR measurements revealed that in both CW and NW samples, glucomannan and xylan showed a parallel orientation with respect to the cellulose microfibrils. In both wood samples, the glucomannan showed a much greater degree of orientation than the xylan, indicating that the glucomannan has established a stronger interaction with cellulose than xylan. For the lignin, the absorption peak also indicated an orientation along the direction of the cellulose microfibrils, but this orientation was more pronounced in CW than in NW, indicating that the lignin is affected by the orientation of the cellulose microfibrils more strongly in CW than it is in NW.


Asunto(s)
Cunninghamia/ultraestructura , Polímeros/metabolismo , Pared Celular/metabolismo , Pared Celular/ultraestructura , Celulosa/metabolismo , Cunninghamia/metabolismo , Lignina/metabolismo , Mananos/metabolismo , Microfibrillas , Espectroscopía Infrarroja por Transformada de Fourier , Madera/metabolismo , Madera/ultraestructura , Xilanos/metabolismo
6.
Enzyme Microb Technol ; 47(6): 257-267, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21052475

RESUMEN

Spruce wood that had been degraded by brown-rot fungi (Gloeophyllum trabeum or Poria placenta) exhibiting mass losses up to 16% was investigated by transmission Fourier transform infrared (FT-IR) imaging microscopy. Here the first work on the application of FT-IR imaging microscopy and multivariate image analysis of fungal degraded wood is presented and the first report on the spatial distribution of polysaccharide degradation during incipient brown-rot of wood. Brown-rot starts to become significant in the outer cell wall regions (middle lamellae, primary cell walls, and the outer layer of the secondary cell wall S1). This pattern was detected even in a sample with non-detectable mass loss. Most significant during incipient decay was the cleavage of glycosidic bonds, i.e. depolymerisation of wood polysaccharides and the degradation of pectic substances. Accordingly, intramolecular hydrogen bonding within cellulose was reduced, while the presence of phenolic groups increased.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA