Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 171: 107634, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459821

RESUMEN

Concerns regarding the persistence, bioaccumulation behaviour, and toxicity of perfluorooctanoic acid and perfluorooctane sulfonic acid have resulted in the creation of thousands of replacement perfluoroalkyl substances (PFAS). This study reports on the discovery of fluorotelomer ethoxylates (FTEO) in indoor dust (9/15 samples), and industrial effluents (14/37 samples) using gas chromatographic cyclic ion mobility mass spectrometry (GC-cIMS). By filtering the detected unknowns by mass and collision-cross section, a series of FTEO homologues were revealed with the formula F-(CF2)n(C2H4O)xH, where n = 6,8,10, and x = 4-12. The highest concentrations were observed in samples collected from healthcare facilities, consistent with the potential use of these compounds in anti-fog products, sprays used to prevent condensation on eyeglasses. FTEOs were also detected in c. 40 % of industrial effluent samples, with the highest concentrations in electroplating facilities, manufacturers of cosmetics and personal care products, and linen cleaning services for healthcare and work uniforms. These results suggest that FTEOs may well be widespread pollutants that are more persistent than previously thought, underlining the need for further study of their occurrence and potential impact to human health and the environment.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Humanos , Aguas Residuales , Polvo/análisis , Fluorocarburos/análisis , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas
2.
Anal Chem ; 87(20): 10368-77, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26412694

RESUMEN

Residential and commercial fires generate a complex mixture of volatile, semivolatile, and nonvolatile compounds. This study focused on the semi/nonvolatile components of fire debris to better understand firefighter exposure risks. Using the enhanced sensitivity of gas chromatography coupled to atmospheric pressure ionization-tandem mass spectrometry (APGC-MS/MS), complex fire debris samples collected from simulation fires were analyzed for the presence of potentially toxic polyhalogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs and PBDD/Fs). Extensive method development was performed to create multiple reaction monitoring (MRM) methods for a wide range of PXDD/Fs from dihalogenated through hexa-halogenated homologue groups. Higher halogenated compounds were not observed due to difficulty eluting them off the long column used for analysis. This methodology was able to identify both polyhalogenated (mixed bromo-/chloro- and polybromo-) dibenzo-p-dioxins and dibenzofurans in the simulated burn study samples collected, with the dibenzofuran species being the dominant compounds in the samples. Levels of these compounds were quantified as total homologue groups due to the limitations of commercial congener availability. Concentration ranges in household simulation debris were observed at 0.01-5.32 ppb (PXDFs) and 0.18-82.11 ppb (PBDFs). Concentration ranges in electronics simulation debris were observed at 0.10-175.26 ppb (PXDFs) and 0.33-9254.41 ppb (PBDFs). Samples taken from the particulate matter coating the firefighters' helmets contained some of the highest levels of dibenzofurans, ranging from 4.10 ppb to 2.35 ppm. The data suggest that firefighters and first responders at fire scenes are exposed to a complex mixture of potentially hundreds to thousands of different polyhalogenated dibenzo-p-dioxins and dibenzofurans that could negatively impact their health.


Asunto(s)
Atmósfera/química , Dioxinas/análisis , Incendios , Furanos/análisis , Cromatografía de Gases y Espectrometría de Masas , Presión
4.
Anal Chem ; 87(15): 7902-8, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26140516

RESUMEN

The goal of this study was to qualify gas chromatography coupled to atmospheric pressure ionization tandem mass spectrometry (APGC-MS/MS) as a reliable and valid technique for analysis of halogenated dioxins and furans that could be used in place of more traditional gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS) analysis. A direct comparison of the two instrumental techniques was performed. APGC-MS/MS system sensitivity was demonstrated to be on the single femtogram level. The APGC-MS/MS analysis also demonstrated method detection limits (MDLs) in both sediment and fish that were 2-18 times lower than those determined for the GC-HRMS. Inlet conditions were established to prevent issues with sample carry-over, due largely to the enhanced sensitivity of this technique. Additionally, this work utilized direct injection for sample introduction through the split/splittless inlet. Finally, quantification of both sediment and fish certified reference materials were directly compared between the APGC-MS/MS and GC-HRMS. The APGC-MS/MS performed similarly to, if not better than, the GC-HRMS instrument in the analysis of these samples. This data is intended to substantiate APGC-MS/MS as a comparable technique to GC-HRMS for the analysis of dioxins and furans.


Asunto(s)
Dioxinas/análisis , Monitoreo del Ambiente/métodos , Furanos/análisis , Cromatografía de Gases y Espectrometría de Masas , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem , Presión Atmosférica , Halogenación , Sustancias Peligrosas/análisis , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA