Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunol Cell Biol ; 99(10): 1085-1092, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273196

RESUMEN

Macrophages display marked plasticity with functions in both inflammation and tissue repair. Evidence demonstrates that this spectrum of macrophage phenotypes is influenced by their local microenvironment and tissue origin. However, in vitro macrophage experiments often do not or cannot readily use macrophages from the most relevant tissue of origin. This study investigated if the origin of two C57BL/6 mouse macrophage cell lines of alveolar (AMJ2-C11) and peritoneal (IC-21) origin may influence their response to mycobacterial infection. Both cell lines equally controlled the growth of Mycobacterium bovis BCG and Mycobacterium tuberculosis, although the expression of all proinflammatory cytokines and chemokines measured (TNF, IL-6, MCP-1, MIP-1α, MIP-1ß, and RANTES) was significantly higher in AMJ2-C11 cells than in IC-21 cells. During M. tuberculosis infection, IL-6, MCP-1, and RANTES expression increased 5-fold, and MIP-1ß expression increased 30-fold. Additionally, AMJ2-C11 cells exhibited significantly higher inducible nitric oxide synthase activity than IC-21 cells, indicative of a more polarized M1 response. The expression of multiple surface markers was also assessed by flow cytometry. CD80 and CD86 were significantly upregulated in AMJ2-C11 cells and downregulated in IC-21 cells during M. tuberculosis infection. The results support the notion that the origin of tissue-resident macrophages influences their phenotype and antimicrobial response and demonstrate hereto unrecognized potential for these cell lines in in vitro studies.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Citocinas , Macrófagos , Ratones , Ratones Endogámicos C57BL
2.
J Mol Med (Berl) ; 99(6): 755-769, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33712860

RESUMEN

microRNA are small non-coding RNA molecules which inhibit gene expression by binding mRNA, preventing its translation. As important regulators of gene expression, there is increasing interest in microRNAs as potential diagnostic biomarkers and therapeutic targets. Studies investigating the role of one of the miRNA-miR-652-3p-detail diverse roles for this miRNA in normal cell homoeostasis and disease states, including cancers, cardiovascular disease, mental health, and central nervous system diseases. Here, we review recent literature surrounding miR-652-3p, discussing its known target genes and their relevance to disease progression. These studies demonstrate that miR-652-3p targets LLGL1 and ZEB1 to modulate cell polarity mechanisms, with impacts on cancer metastasis and asymmetric cell division. Inhibition of the NOTCH ligand JAG1 by miR-652-3p can have diverse effects on angiogenesis and immune cell regulation. Investigation of miR-652-3p and other dysregulated miRNAs identified a number of pathways potentially regulated by miR-652-3p. This review demonstrates that miR-652-3p has great promise as a diagnostic or therapeutic target due to its activity across multiple cellular systems.


Asunto(s)
Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Homeostasis , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , Animales , Biomarcadores , Humanos , Especificidad de Órganos , Pronóstico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...