Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
Aging Cell ; 22(9): e13905, 2023 09.
Article En | MEDLINE | ID: mdl-37334527

DNA damage is a central contributor to the aging process. In the brain, a major threat to the DNA is the considerable amount of reactive oxygen species produced, which can inflict oxidative DNA damage. This type of damage is removed by the base excision repair (BER) pathway, an essential DNA repair mechanism, which contributes to genome stability in the brain. Despite the crucial role of the BER pathway, insights into how this pathway is affected by aging in the human brain and the underlying regulatory mechanisms are very limited. By microarray analysis of four cortical brain regions from humans aged 20-99 years (n = 57), we show that the expression of core BER genes is largely downregulated during aging across brain regions. Moreover, we find that expression of many BER genes correlates positively with the expression of the neurotrophin brain-derived neurotrophic factor (BDNF) in the human brain. In line with this, we identify binding sites for the BDNF-activated transcription factor, cyclic-AMP response element-binding protein (CREB), in the promoter of most BER genes and confirm the ability of BDNF to regulate several BER genes by BDNF treatment of mouse primary hippocampal neurons. Together, these findings uncover the transcriptional landscape of BER genes during aging of the brain and suggest BDNF as an important regulator of BER in the human brain.


Brain-Derived Neurotrophic Factor , DNA Repair , Animals , Humans , Mice , Aging/genetics , Aging/metabolism , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , DNA Repair/genetics , Signal Transduction/genetics
2.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Article En | MEDLINE | ID: mdl-36829914

The DNA glycosylase NEIL2 plays a central role in maintaining genome integrity, in particular during oxidative stress, by recognizing oxidized base lesions and initiating repair of these via the base excision repair (BER) pathway. Post-translational modifications are important molecular switches that regulate and coordinate the BER pathway, and thereby enable a rapid and fine-tuned response to DNA damage. Here, we report for the first time that human NEIL2 is regulated by phosphorylation. We demonstrate that NEIL2 is phosphorylated by the two kinases cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in vitro and in human SH-SY5Y neuroblastoma cells. The phosphorylation of NEIL2 by PKC causes a substantial reduction in NEIL2 repair activity, while CDK5 does not directly alter the enzymatic activity of NEIL2 in vitro, suggesting distinct modes of regulating NEIL2 function by the two kinases. Interestingly, we show a rapid dephosphorylation of NEIL2 in response to oxidative stress in SH-SY5Y cells. This points to phosphorylation as an important modulator of NEIL2 function in this cellular model, not least during oxidative stress.

3.
Biochimie ; 206: 136-149, 2023 Mar.
Article En | MEDLINE | ID: mdl-36334646

Nei Like DNA Glycosylase 1 (NEIL1) is a DNA glycosylase, which specifically processes oxidative DNA damage by initiating base excision repair. NEIL1 recognizes and removes bases, primarily oxidized pyrimidines, which have been damaged by endogenous oxidation or exogenous mutagenic agents. NEIL1 functions through a combined glycosylase/AP (apurinic/apyrimidinic)-lyase activity, whereby it cleaves the N-glycosylic bond between the DNA backbone and the damaged base via its glycosylase activity and hydrolysis of the DNA backbone through beta-delta elimination due to its AP-lyase activity. In our study we investigated our hypothesis proposing that the cancer resistance of the bowhead whale can be associated with a better DNA repair with NEIL1 being upregulated or more active. Here, we report the molecular cloning and characterization of three transcript variants of bowhead whale NEIL1 of which two were homologous to human transcripts. In addition, a novel NEIL1 transcript variant was found. A differential expression of NEIL mRNA was detected in bowhead eye, liver, kidney, and muscle. The A-to-I editing of NEIL1 mRNA was shown to be conserved in the bowhead and two adenosines in the 242Lys codon were subjected to editing. A mass spectroscopy analysis of liver and eye tissue failed to demonstrate the existence of a NEIL1 isoform originating from RNA editing. Recombinant bowhead and human NEIL1 were expressed in E. coli and assayed for enzymatic activity. Both bowhead and human recombinant NEIL1 catalyzed, with similar efficiency, the removal of a 5-hydroxyuracil lesion in a DNA bubble structure. Hence, these results do not support our hypothesis but do not refute the hypothesis either.


Bowhead Whale , DNA Glycosylases , Escherichia coli Proteins , Lyases , Animals , Humans , Bowhead Whale/genetics , Bowhead Whale/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , DNA Repair , DNA Glycosylases/genetics , DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , Cloning, Molecular , DNA , RNA, Messenger , Lyases/metabolism , Escherichia coli Proteins/genetics , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Deoxyribonuclease (Pyrimidine Dimer)/metabolism
4.
Aging (Albany NY) ; 14(16): 6829-6839, 2022 08 29.
Article En | MEDLINE | ID: mdl-36040386

Genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, loss of proteostasis, deregulated nutrient-sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication were the original nine hallmarks of ageing proposed by López-Otín and colleagues in 2013. The proposal of these hallmarks of ageing has been instrumental in guiding and pushing forward research on the biology of ageing. In the nearly past 10 years, our in-depth exploration on ageing research has enabled us to formulate new hallmarks of ageing which are compromised autophagy, microbiome disturbance, altered mechanical properties, splicing dysregulation, and inflammation, among other emerging ones. Amalgamation of the 'old' and 'new' hallmarks of ageing may provide a more comprehensive explanation of ageing and age-related diseases, shedding light on interventional and therapeutic studies to achieve healthy, happy, and productive lives in the elderly.


Aging , Epigenesis, Genetic , Aged , Aging/physiology , Cellular Senescence/physiology , Genomic Instability , Humans , Telomere
6.
Methods Mol Biol ; 2363: 321-334, 2022.
Article En | MEDLINE | ID: mdl-34545501

Nuclear, mitochondrial and plastidic DNA is constantly exposed to conditions, such as ultraviolet radiation or reactive oxygen species, which will induce chemical modifications to the nucleotides. Unless repaired, these modifications can lead to mutations, so the nucleus, mitochondria and plastids each contains a number of DNA repair systems. We here describe assays for measuring the enzyme activities associated with the base-excision repair pathway in potato tuber mitochondria. As the name implies, this pathway involves removing a modified base and replacing it with an undamaged base. Activity of each of the enzymes involved, DNA glycosylase, apurinic/apyrimidinic endonuclease, DNA polymerase and DNA ligase can be measured by incubating a mitochondrial extract with a specifically designed oligonucleotide. After incubation, the reaction mixture is separated on a polyacrylamide gel, and the amounts of specific products formed is estimated by autoradiography, which makes it possible to calculate the enzymatic activity.


DNA Repair , Mitochondria , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair Enzymes/genetics , DNA, Mitochondrial , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Ultraviolet Rays
7.
Geroscience ; 44(1): 103-125, 2022 02.
Article En | MEDLINE | ID: mdl-34966960

Oxidative stress is an important factor in age-associated neurodegeneration. Accordingly, mitochondrial dysfunction and genomic instability have been considered as key hallmarks of aging and have important roles in age-associated cognitive decline and neurodegenerative disorders. In order to evaluate whether maintenance of cognitive abilities at very old age is associated with key hallmarks of aging, we measured mitochondrial bioenergetics, mitochondrial DNA copy number and DNA repair capacity in peripheral blood mononuclear cells from centenarians in a Danish 1915 birth cohort (n = 120). Also, the circulating levels of brain-derived neurotrophic factor, NAD+ /NADH and carbonylated proteins were measured in plasma of the centenarians and correlated to cognitive capacity. Mitochondrial respiration was well preserved in the centenarian cohort when compared to young individuals (21-35 years of age, n = 33). When correlating cognitive performance of the centenarians with mitochondrial function such as basal respiration, ATP production, reserve capacity and maximal respiration, no overall correlations were observed, but when stratifying by sex, inverse associations were observed in the males (p < 0.05). Centenarians with the most severe cognitive impairment displayed the lowest activity of the central DNA repair enzyme, APE1 (p < 0.05). A positive correlation between cognitive capacity and levels of NAD+ /NADH was observed (p < 0.05), which may be because NAD+ /NADH consuming enzyme activities strive to reduce the oxidative DNA damage load. Also, circulating protein carbonylation was lowest in centenarians with highest cognitive capacity (p < 0.05). An opposite trend was observed for levels of brain-derived neurotrophic factor (p = 0.17). Our results suggest that maintenance of cognitive capacity at very old age may be associated with cellular mechanisms related to oxidative stress and DNA metabolism.


Centenarians , Leukocytes, Mononuclear , Aged, 80 and over , Brain/metabolism , Cognition , DNA Repair , Humans , Male
8.
Cell Metab ; 33(11): 2201-2214.e11, 2021 11 02.
Article En | MEDLINE | ID: mdl-34678202

Type 2 diabetes mellitus (T2DM) is associated with impaired skeletal muscle function and degeneration of the skeletal muscles. However, the mechanisms underlying the degeneration are not well described in human skeletal muscle. Here we show that skeletal muscle of T2DM patients exhibit degenerative remodeling of the extracellular matrix that is associated with a selective increase of a subpopulation of fibro-adipogenic progenitors (FAPs) marked by expression of THY1 (CD90)-the FAPCD90+. We identify platelet-derived growth factor (PDGF) as a key FAP regulator, as it promotes proliferation and collagen production at the expense of adipogenesis. FAPsCD90+ display a PDGF-mimetic phenotype, with high proliferative activity, clonogenicity, and production of extracellular matrix. FAPCD90+ proliferation was reduced by in vitro treatment with metformin. Furthermore, metformin treatment reduced FAP content in T2DM patients. These data identify a PDGF-driven conversion of a subpopulation of FAPs as a key event in the fibrosis development in T2DM muscle.


Diabetes Mellitus, Type 2 , Muscular Diseases , Adipogenesis , Cell Differentiation , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Humans , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Diseases/metabolism
9.
Article En | MEDLINE | ID: mdl-31770594

Endothelin-1 (ET-1) is a very potent vasoactive peptide released from endothelial cells, and ET-1 plays an important role in the maintenance and regulation of blood pressure in mammals. ET-1 signaling is mediated by two receptors: ETA and ETB. In mammals, ETA receptors are located on vascular smooth muscle where they mediate vasoconstriction. ETB receptors located on the endothelium mediate vasodilatation through the release of nitric oxide, whereas stimulation of ETB receptors placed on vascular smooth muscle leads to vasoconstriction. Less is known about ET-1 signaling in reptiles. In anaesthetized alligators, ET-1 elicits a biphasic blood pressure with a long-lasting initial decrease followed by a smaller increase in systemic blood pressure. In anaesthetized freshwater turtles, ET-1 causes a dose-dependent systemic vasodilatation mediated through ETB receptors. In the present study, we investigated the cardiovascular effects of ET-1 on the systemic and pulmonary vasculature of pythons. The presence of ETA and ETB receptors in the vasculature of pythons was verified by means of immunoblotting. Myography on isolated vessels revealed a dose-dependent vasoconstrictory response to ET-1 in both mesenteric and pulmonary arteries. Pressure measurements in recovered specimens revealed an ET-1-induced rise in systemic blood pressure supporting our in vitro findings. In conclusion, our study shows that ET-1 induces a strong pressor effect in the systemic circulation.


Boidae/physiology , Endothelin Receptor Antagonists/pharmacology , Endothelin-1/pharmacology , Vasoconstriction/drug effects , Animals , Blood Pressure/drug effects , Mesenteric Arteries/drug effects , Nitric Oxide/metabolism , Pulmonary Artery/drug effects , Receptors, Endothelin/chemistry , Receptors, Endothelin/genetics , Receptors, Endothelin/metabolism , Vasodilation/drug effects
10.
Biogerontology ; 20(3): 255-269, 2019 06.
Article En | MEDLINE | ID: mdl-30666569

Aging is a natural and unavoidable part of life. However, aging is also the primary driver of the dominant human diseases, such as cardiovascular disease, cancer, and neurodegenerative diseases, including Alzheimer's disease. Unraveling the sophisticated molecular mechanisms of the human aging process may provide novel strategies to extend 'healthy aging' and the cure of human aging-related diseases. Werner syndrome (WS), is a heritable human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. As a classical premature aging disease, etiological exploration of WS can shed light on the mechanisms of normal human aging and facilitate the development of interventional strategies to improve healthspan. Here, we summarize the latest progress of the molecular understandings of WRN protein, highlight the advantages of using different WS model systems, including Caenorhabditis elegans, Drosophila melanogaster and induced pluripotent stem cell (iPSC) systems. Further studies on WS will propel drug development for WS patients, and possibly also for normal age-related diseases.


Aging/pathology , Werner Syndrome/pathology , Animals , Caenorhabditis elegans/physiology , Drosophila melanogaster/physiology , Humans , Models, Biological , Mutation , Werner Syndrome/genetics , Werner Syndrome/therapy
11.
Physiol Plant ; 166(2): 494-512, 2019 Jun.
Article En | MEDLINE | ID: mdl-30035320

Mitochondria are one of the major sites of reactive oxygen species (ROS) production in the plant cell. ROS can damage DNA, and this damage is in many organisms mainly repaired by the base excision repair (BER) pathway. We know very little about DNA repair in plants especially in the mitochondria. Combining proteomics, bioinformatics, western blot and enzyme assays, we here demonstrate that the complete BER pathway is found in mitochondria isolated from potato (Solanum tuberosum) tubers. The enzyme activities of three DNA glycosylases and an apurinic/apyrimidinic (AP) endonuclease (APE) were characterized with respect to Mg2+ dependence and, in the case of the APE, temperature sensitivity. Evidence for the presence of the DNA polymerase and the DNA ligase, which complete the repair pathway by replacing the excised base and closing the gap, was also obtained. We tested the effect of oxidative stress on the mitochondrial BER pathway by incubating potato tubers under hypoxia. Protein carbonylation increased significantly in hypoxic tuber mitochondria indicative of increased oxidative stress. The activity of two BER enzymes increased significantly in response to this oxidative stress consistent with the role of the BER pathway in the repair of oxidative damage to mitochondrial DNA.


DNA Repair/genetics , DNA, Mitochondrial/genetics , DNA, Plant/genetics , Solanum tuberosum/genetics , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Solanum tuberosum/metabolism
12.
Physiol Plant ; 166(2): 513-524, 2019 Jun.
Article En | MEDLINE | ID: mdl-29952010

We evaluated the effect of global warming on Araucaria angustifolia (Bert.) O. Kuntze, a critically endangered native tree of Southern Brazil, by studying the effects of short-term high temperature treatment on cell viability, respiration and DNA repair of embryogenic cells. Compared with control cells grown at 25°C, cell viability was reduced by 40% after incubation at 30 and 37°C for 24 and 6 h, respectively, while 2 h at 40 and 42°C killed 95% of the cells. Cell respiration was unaffected at 30-37°C, but dramatically reduced after 2 h at 42°C. The in vitro activity of enzymes of the base excision repair (BER) pathway was determined. Apurinic/apyrimidine endonuclease, measured in extracts from cells incubated for 2 h at 42°C, was completely inactivated while lower temperatures had no effect. The activities of three enzymes of the mitochondrial BER pathway were measured after 30-min preincubation of isolated mitochondria at 25-40°C and one of them, uracil glycosylase, was completely inhibited at 40°C. We conclude that cell viability, respiration and DNA repair have different temperature sensitivities between 25 and 37°C, and that they are all very sensitive to 40 or 42°C. Thus, A. angustifolia will likely be vulnerable to the short-term high temperature events associated with global warming.


DNA Repair/physiology , Tracheophyta/genetics , Tracheophyta/physiology , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA Repair/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Temperature , Tracheophyta/enzymology
13.
Mech Ageing Dev ; 175: 7-16, 2018 10.
Article En | MEDLINE | ID: mdl-29944916

Cockayne Syndrome (CS) is a rare autosomal recessive disorder, which leads to neurodegeneration, growth failure and premature aging. Most of the cases are due to mutations in the ERCC6 gene, which encodes the protein CSB. CSB is involved in several functions including DNA repair and transcription. Here we describe two Danish brothers with CS. Both patients carried a novel splice site mutation (c.2382+2T>G), and a previously described nonsense mutation (c.3259C>T, p.Arg1087X) in a biallelic state. Both patients presented the cardinal features of the disease including microcephaly, congenital cataract and postnatal growth failure. In addition, their fibroblasts were hypersensitive to UV irradiation and exhibited increased superoxide levels in comparison to fibroblasts from healthy age and gender matched individuals. Metabolomic analysis revealed a distinctive metabolic profile in cells from the CS patients compared to control cells. Among others, α-ketoglutarate, hydroxyglutarate and certain amino acids (ornithine, proline and glycine) were reduced in the CS patient fibroblasts, whereas glycolytic intermediates (glucose-6-phosphate and pyruvic acid) and fatty acids (palmitic, stearic and myristic acid) were increased. Our data not only provide additional information to the database of CS mutations, but also point towards targets for potential treatment of this devastating disease.


Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Energy Metabolism/genetics , Mutation , Poly-ADP-Ribose Binding Proteins/genetics , RNA Splice Sites/genetics , Child, Preschool , Cockayne Syndrome/complications , Cockayne Syndrome/diagnosis , Cockayne Syndrome/metabolism , DNA Mutational Analysis , Genetic Predisposition to Disease , Humans , Infant , Magnetic Resonance Imaging , Male , Metabolomics/methods , Phenotype , Tomography, X-Ray Computed
14.
Proc Natl Acad Sci U S A ; 115(8): E1876-E1885, 2018 02 20.
Article En | MEDLINE | ID: mdl-29432159

Emerging findings suggest that compromised cellular bioenergetics and DNA repair contribute to the pathogenesis of Alzheimer's disease (AD), but their role in disease-defining pathology is unclear. We developed a DNA repair-deficient 3xTgAD/Polß+/- mouse that exacerbates major features of human AD including phosphorylated Tau (pTau) pathologies, synaptic dysfunction, neuronal death, and cognitive impairment. Here we report that 3xTgAD/Polß+/- mice have a reduced cerebral NAD+/NADH ratio indicating impaired cerebral energy metabolism, which is normalized by nicotinamide riboside (NR) treatment. NR lessened pTau pathology in both 3xTgAD and 3xTgAD/Polß+/- mice but had no impact on amyloid ß peptide (Aß) accumulation. NR-treated 3xTgAD/Polß+/- mice exhibited reduced DNA damage, neuroinflammation, and apoptosis of hippocampal neurons and increased activity of SIRT3 in the brain. NR improved cognitive function in multiple behavioral tests and restored hippocampal synaptic plasticity in 3xTgAD mice and 3xTgAD/Polß+/- mice. In general, the deficits between genotypes and the benefits of NR were greater in 3xTgAD/Polß+/- mice than in 3xTgAD mice. Our findings suggest a pivotal role for cellular NAD+ depletion upstream of neuroinflammation, pTau, DNA damage, synaptic dysfunction, and neuronal degeneration in AD. Interventions that bolster neuronal NAD+ levels therefore have therapeutic potential for AD.


Alzheimer Disease , Disease Models, Animal , NAD/pharmacology , Niacinamide/analogs & derivatives , Animals , Cognitive Dysfunction , DNA Damage , Gene Expression Regulation/drug effects , Male , Mice , Mice, Transgenic , Neurogenesis/drug effects , Niacinamide/pharmacology , Pyridinium Compounds , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuins/genetics , Sirtuins/metabolism , tau Proteins/metabolism
15.
Neurochem Int ; 109: 202-209, 2017 Oct.
Article En | MEDLINE | ID: mdl-28235551

Mitochondrial dysfunction contributes to normal aging and a wide spectrum of age-related diseases, including neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. It is important to maintain a healthy mitochondrial population which is tightly regulated by proteolysis and mitophagy. Mitophagy is a specialized form of autophagy that regulates the turnover of damaged and dysfunctional mitochondria, organelles that function in producing energy for the cell in the form of ATP and regulating energy homeostasis. Mechanistic studies on mitophagy across species highlight a sophisticated and integrated cellular network that regulates the degradation of mitochondria. Strategies directed at maintaining a healthy mitophagy level in aged individuals might have beneficial effects. In this review, we provide an updated mechanistic overview of mitophagy pathways and discuss the role of reduced mitophagy in neurodegeneration. We also highlight potential translational applications of mitophagy-inducing compounds, such as NAD+ precursors and urolithins.


Aging/metabolism , Autophagy/physiology , Mitochondria/metabolism , Mitophagy/physiology , Neurodegenerative Diseases/metabolism , Aging/pathology , Animals , Humans , Mitochondria/pathology , Neurodegenerative Diseases/pathology
16.
Front Aging Neurosci ; 9: 430, 2017.
Article En | MEDLINE | ID: mdl-29311911

Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.

17.
Cell Signal ; 28(3): 214-223, 2016 Mar.
Article En | MEDLINE | ID: mdl-26691982

The RecQ helicases play roles in maintenance of genomic stability in species ranging from Escherichia coli to humans and interact with proteins involved in DNA metabolic pathways such as DNA repair, recombination, and replication. Our previous studies found that the Caenorhabditis elegans WRN-1 RecQ protein (a human WRN ortholog) exhibits ATP-dependent 3'-5' helicase activity and that the WRN-1 helicase is stimulated by RPA-1 on a long forked DNA duplex. However, the role of WRN-1 in response to S-phase associated with DSBs is unclear. We found that WRN-1 is involved in the checkpoint response to DSBs after CPT, inducing cell cycle arrest, is recruited to DSBs by RPA-1 and functions upstream of ATL-1 and ATM-1 for CHK-1 phosphorylation in the S-phase checkpoint. In addition, WRN-1 and RPA-1 recruitments to the DSBs require MRE-11, suggesting that DSB processing controlled by MRE-11 is important for WRN-1 at DSBs. The repair of CPT-induced DSBs is greatly reduced in the absence of WRN-1. These observations suggest that WRN-1 functions downstream of RPA-1 and upstream of CHK-1 in the DSB checkpoint pathway and is also required for the repair of DSB.


Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Camptothecin/toxicity , DNA Breaks, Double-Stranded/drug effects , DNA Helicases/metabolism , DNA Repair , Animals , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , Checkpoint Kinase 1 , Comet Assay , DNA Helicases/genetics , Mutagenesis , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Interference , Replication Protein A/antagonists & inhibitors , Replication Protein A/genetics , Replication Protein A/metabolism , S Phase Cell Cycle Checkpoints/drug effects
18.
Am J Physiol Renal Physiol ; 310(8): F763-F776, 2016 04 15.
Article En | MEDLINE | ID: mdl-26608791

Ureteral obstruction is associated with oxidative stress and the development of fibrosis of the kidney parenchyma. Apurinic/apyrimidinic endonuclease (APE1) is an essential DNA repair enzyme for repair of oxidative DNA lesions and regulates several transcription factors. The aim of the present study was to investigate whether APE1 is regulated by acute (24 h) and chronic (7 days) unilateral ureteral obstruction (UUO). APE1 was expressed in essentially all kidney cells with the strongest expression in proximal tubuli. After 24 h of UUO, APE1 mRNA was induced in the cortex, inner stripe of the outer medulla (ISOM), and inner medulla (IM). In contrast, the APE1 protein level was not regulated in the IM and ISOM and only slightly increased in the cortex. APE1 DNA repair activity was not significantly changed. A different pattern of regulation was observed after 7 days of UUO, with an increase of the APE1 mRNA level in the cortex but not in the ISOM and IM. The APE1 protein level in the cortex, ISOM, and IM increased significantly. Importantly, we observed a significant increase in APE1 DNA repair activity in the cortex and IM. To confirm our model, we investigated heme oxygenase-1, collagen type I, fibronectin I, and α-smooth muscle actin levels. In vitro, we found the transcriptional regulatory activity of APE1 to be involved in the upregulation of the profibrotic factor connective tissue growth factor. In summary, APE1 is regulated at different levels after acute and chronic UUO. Thus, our results suggest that DNA repair activity is regulated in response to progressive (7 days) obstruction and that APE1 potentially could play a role in the development of fibrosis in kidney disease.


DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Kidney/metabolism , Ureteral Obstruction/metabolism , Animals , Collagen Type I/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Disease Models, Animal , Fibronectins/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Gene Expression Regulation , Heme Oxygenase-1/metabolism , Kidney/pathology , Male , Oxidative Stress/physiology , Rats , Rats, Wistar , Ureteral Obstruction/pathology
19.
Biochimie ; 108: 160-8, 2015 Jan.
Article En | MEDLINE | ID: mdl-25446650

Mitochondria are essential organelles and consequently proper expression and maintenance of the mitochondrial genome are indispensable for proper cell function. The mitochondrial Suv3 (SUPV3L1) helicase is known to have a central role in mitochondrial RNA metabolism and to be essential for maintenance of mitochondrial DNA stability. Here we have performed biochemical investigations to determine the potential regulation of the human Suv3 (hSuv3) helicase function by inorganic cofactors. We find that hSuv3 helicase and ATPase activity in vitro is strictly dependent on the presence of specific divalent cations. Interestingly, we show that divalent cations and nucleotide concentration have a direct effect on helicase substrate stability. Also, hSuv3 helicase is able to utilize several different nucleotide cofactors including both NTPs and dNTPs. Intriguingly, the potency of the individual nucleotide as energy source for hSuv3 unwinding differed depending on the included divalent cation and nucleotide concentration. At low concentrations, all four NTPs could support helicase activity with varying effectiveness depending on the included divalent cation. However, at higher nucleotide concentrations, only ATP was able to elicit the helicase activity of hSuv3. Consequently, we speculate that the capacity of hSuv3 DNA unwinding activity might be sensitive to the local availability of specific inorganic cofactors.


Cations, Divalent/pharmacology , Coenzymes/pharmacology , DEAD-box RNA Helicases/metabolism , DNA/metabolism , Nucleotides/pharmacology , Adenosine Triphosphatases/metabolism , Dose-Response Relationship, Drug , Humans , Mitochondria/enzymology , Protein Binding/drug effects , Substrate Specificity
20.
Aging Cell ; 14(1): 60-6, 2015 Feb.
Article En | MEDLINE | ID: mdl-25470651

FOXO3A variation has repeatedly been reported to associate with human longevity, yet only few studies have investigated whether FOXO3A variation also associates with aging-related traits. Here, we investigate the association of 15 FOXO3A tagging single nucleotide polymorphisms (SNPs) in 1088 oldest-old Danes (age 92-93) with 4 phenotypes known to predict their survival: cognitive function, hand grip strength, activity of daily living (ADL), and self-rated health. Based on previous studies in humans and foxo animal models, we also explore self-reported diabetes, cancer, cardiovascular disease, osteoporosis, and bone (femur/spine/hip/wrist) fracture. Gene-based testing revealed significant associations of FOXO3A variation with ADL (P = 0.044) and bone fracture (P = 0.006). The single-SNP statistics behind the gene-based analysis indicated increased ADL (decreased disability) and reduced bone fracture risk for carriers of the minor alleles of 8 and 10 SNPs, respectively. These positive directions of effects are in agreement with the positive effects on longevity previously reported for these SNPs. However, when correcting for the test of 9 phenotypes by Bonferroni correction, bone fracture showed borderline significance (P = 0.054), while ADL did not (P = 0.396). Although the single-SNP associations did not formally replicate in another study population of oldest-old Danes (n = 1279, age 94-100), the estimates were of similar direction of effect as observed in the Discovery sample. A pooled analysis of both study populations displayed similar or decreased sized P-values for most associations, hereby supporting the initial findings. Nevertheless, confirmation in additional study populations is needed.


Aging/genetics , Forkhead Transcription Factors/genetics , Genetic Association Studies , Polymorphism, Single Nucleotide/genetics , Activities of Daily Living , Aged, 80 and over , Denmark , Female , Forkhead Box Protein O3 , Fractures, Bone/genetics , Humans , Linkage Disequilibrium/genetics , Male , Phenotype , Reproducibility of Results
...