Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Article En | MEDLINE | ID: mdl-38639701

BACKGROUND: Extracellular vesicles (EVs) isolated from human heart-derived cells have shown promise in suppressing inflammation and fibroblast proliferation. However, their precise benefits in atrial fibrillation (AF) prevention and the role of their antifibrotic/anti-inflammatory properties remain unclear. OBJECTIVES: The purpose of this study was to conduct a head-to-head comparison of antiarrhythmic strategies to prevent postoperative AF using a rat model of sterile pericarditis. Specifically, we aimed to assess the efficacy of amiodarone (a classic antiarrhythmic drug), colchicine (an anti-inflammatory agent), and EVs derived from human heart-derived cells, which possess anti-inflammatory and antifibrotic properties, on AF induction, inflammation, and fibrosis progression. METHODS: Heart-derived cells were cultured from human atrial appendages under serum-free xenogen-free conditions. Middle-aged Sprague Dawley rats were randomized into different groups, including sham operation, sterile pericarditis with amiodarone treatment, sterile pericarditis with colchicine treatment (2 dose levels), and sterile pericarditis with intra-atrial injection of EVs or vehicle. Invasive electrophysiological testing was performed 3 days after surgery before sacrifice. RESULTS: Sterile pericarditis increased the likelihood of inducing AF. Colchicine and EVs exhibited anti-inflammatory effects, but only EV treatment significantly reduced AF probability, whereas colchicine showed a positive trend without statistical significance. EVs and high-dose colchicine reduced atrial fibrosis by 46 ± 2% and 26 ± 2%, respectively. Amiodarone prevented AF induction but had no effect on inflammation or fibrosis. CONCLUSIONS: In this study, both amiodarone and EVs prevented AF, whereas treatment with colchicine was ineffective. The additional anti-inflammatory and antifibrotic effects of EVs suggest their potential as a comprehensive therapeutic approach for AF prevention, surpassing the effects of amiodarone or colchicine.

2.
Theranostics ; 14(2): 608-621, 2024.
Article En | MEDLINE | ID: mdl-38169629

Rationale: Extracellular vesicles (EVs) from human explant-derived cells injected directly into the atria wall muscle at the time of open chest surgery reduce atrial fibrosis, atrial inflammation, and atrial fibrillation (AF) in a rat model of sterile pericarditis. Albeit a promising solution to prevent postoperative AF, the mechanism(s) underlying this effect are unknown and it is not clear if this benefit is dependent on EV dose. Methods: To determine the dose-efficacy relationship of EVs from human explant-derived cells in a rat model of sterile pericarditis. Increasing doses of EVs (106, 107, 108 or 109) or vehicle control were injected into the atria of middle-age male Sprague-Dawley rats at the time of talc application. A sham control group was included to demonstrate background inducibility. Three days after surgery, all rats underwent invasive electrophysiological testing prior to sacrifice. Results: Pericarditis increased the likelihood of inducing AF (p<0.05 vs. sham). All doses decreased the probability of inducing AF with maximal effects seen after treatment with the highest dose (109, p<0.05 vs. vehicle). Pericarditis increased atrial fibrosis while EV treatment limited the effect of pericarditis on atrial fibrosis with maximal effects seen after treatment with 108 or 109 EVs. Increasing EV dose was associated with progressive decreases in pro-inflammatory cytokine content, inflammatory cell infiltration, and oxidative stress. EVs decreased NLRP3 (NACHT, LRR, and PYD domains-containing protein-3) inflammasome activation though a direct effect on resident atrial fibroblasts and macrophages. This suppressive effect was exclusive to EVs produced by heart-derived cells as application of EVs from bone marrow or umbilical cords did not alter NLRP3 activity. Conclusions: Intramyocardial injection of incremental doses of EVs at the time of open chest surgery led to progressive reductions in atrial fibrosis and inflammatory markers. These effects combined to render atria resistant to the pro-arrhythmic effects of pericarditis which is mechanistically related to suppression of the NLRP3 inflammasome.


Atrial Fibrillation , Exosomes , Pericarditis , Male , Rats , Humans , Animals , Atrial Fibrillation/prevention & control , Atrial Fibrillation/drug therapy , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Fibrosis
...