Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 11: 1282450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025078

RESUMEN

The development of disease screening methods using biomedical detection dogs relies on the collection and analysis of body odors, particularly volatile organic compounds (VOCs) present in body fluids. To capture and analyze odors produced by the human body, numerous protocols and materials are used in forensics or medical studies. This paper provides an overview of sampling devices used to collect VOCs from sweat and exhaled air, for medical diagnostic purposes using canine olfaction and/or Gas Chromatography-Mass spectrometry (GC-MS). Canine olfaction and GC-MS are regarded as complementary tools, holding immense promise for detecting cancers and infectious diseases. However, existing literature lacks guidelines for selecting materials suitable for both canine olfaction and GC-MS. Hence, this review aims to address this gap and pave the way for efficient body odor sampling materials. The first section of the paper describes the materials utilized in training sniffing dogs, while the second section delves into the details of sampling devices and extraction techniques employed for exhaled air and sweat analysis using GC-MS. Finally, the paper proposes the development of an ideal sampling device tailored for detection purposes in the field of odorology. By bridging the knowledge gap, this study seeks to advance disease detection methodologies, harnessing the unique abilities of both dogs and GC-MS analysis in biomedical research.

2.
Foods ; 11(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36359971

RESUMEN

Over the last few years, the development of micro-distilleries producing diverse spirits with various flavors has been observed. Versatile analytical techniques for the characterization of aroma compounds in such alcoholic beverages are therefore required. A model mixture embodying a theoretical distilled spirit was made according to the data found in literature to compare usual extraction techniques. When it was applied to the model liquor, the headspace solid phase microextraction (HS-SPME) extraction method was preferred to the liquid-liquid extraction (LLE), solid phase extraction (SPE) and stir bar/headspace sorptive extraction (SBSE/HSSE) methods according to efficiency, cost, and environmental criteria. An optimization study using the model mixture showed that the extraction was optimal with a divinylbenzene/carboxen/poly(dimethylsiloxane) DVB/CAR/PDMS fiber, during 60 min, at 35 °C and with the addition of 10% NaCl. This method was successfully applied to three different commercial liquors and led to the identification of 188 flavor compounds, including alcohols, esters, lactones, carbonyls, acetals, fatty acids, phenols, furans, aromatics, terpenoids, alkenes, and alkanes.

3.
Molecules ; 27(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35209003

RESUMEN

In recent years, interest in Cannabis sativa L. has been rising, as legislation is moving in the right direction. This plant has been known and used for thousands of years for its many active ingredients that lead to various therapeutic effects (pain management, anti-inflammatory, antioxidant, etc.). In this report, our objective was to optimize a method for the extraction of cannabinoids from a clone of Cannabis sativa L. #138 resulting from an agronomic test (LaFleur, Angers, FR). Thus, we wished to identify compounds with anticancer activity on human pancreatic tumor cell lines. Three static maceration procedures, with different extraction parameters, were compared based on their median inhibitory concentration (IC50) values and cannabinoid extraction yield. As CBD emerged as the molecule responsible for inducing apoptosis in the human pancreatic cancer cell line, a CBD-rich cannabis strain remains attractive for therapeutic applications. Additionally, while gemcitabine, a gold standard drug in the treatment of pancreatic cancer, only triggers cell cycle arrest in G0/G1, CBD also activates the cell signaling cascade to lead to programmed cell death. Our results emphasize the potential of natural products issued from medicinal hemp for pancreatic cancer therapy, as they lead to an accumulation of intracellular superoxide ions, affect the mitochondrial membrane potential, induce G1 cell cycle arrest, and ultimately drive the pancreatic cancer cell to lethal apoptosis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Cannabinoides/farmacología , Cannabis/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/química , Antioxidantes/química , Cannabinoides/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Extractos Vegetales/química , Esferoides Celulares , Células Tumorales Cultivadas
4.
Sci Rep ; 8(1): 16857, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442984

RESUMEN

Viticulture is of high socio-economic importance; however, its prevalent practices severely impact the environment and human health, and criticisms from society are raising. Vine managements systems are further challenged by climatic changes. Of the 8 million hectares grown worldwide, conventional and organic practices cover 90% and 9% of acreage, respectively. Biodynamic cultivation accounts for 1%. Although economic success combined with low environmental impact is widely claimed by biodynamic winegrowers from California, to South Africa, and France, this practice is still controversial in viticulture and scientific communities. To rethink the situation, we encouraged stakeholders to confront conventional and biodynamic paradigms in a Participative-Action-Research. Co-designed questions were followed up by holistic comparison of conventional and biodynamic vineyard managements. Here we show that the amplitude of plant responses to climatic threats was higher in biodynamic than conventional management. The same stood true for seasonal trends and pathogens attacks. This was associated with higher expression of silencing and immunity genes, and higher anti-oxidative and anti-fungal secondary metabolite levels. This suggests that sustainability of biodynamic practices probably relies on fine molecular regulations. Such knowledge should contribute to resolving disagreements between stakeholders and help designing the awaited sustainable viticulture at large.


Asunto(s)
Clima , Agricultura Orgánica/métodos , Vitis/microbiología , Vitis/virología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Metaboloma , Inmunidad de la Planta/genética , Hojas de la Planta/metabolismo , Metabolismo Secundario/genética , Suelo , Estrés Fisiológico/genética , Vitis/genética
5.
Proc Natl Acad Sci U S A ; 112(19): 5893-8, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25897020

RESUMEN

Archaeochemistry as the application of the most recent analytical techniques to ancient samples now provides an unprecedented understanding of human culture throughout history. In this paper, we report on a multiplatform analytical investigation of 170-y-old champagne bottles found in a shipwreck at the bottom of the Baltic Sea, which provides insight into winemaking practices used at the time. Organic spectroscopy-based nontargeted metabolomics and metallomics give access to the detailed composition of these wines, revealing, for instance, unexpected chemical characteristics in terms of small ion, sugar, and acid contents as well as markers of barrel aging and Maillard reaction products. The distinct aroma composition of these ancient champagne samples, first revealed during tasting sessions, was later confirmed using state-of-the-art aroma analysis techniques. After 170 y of deep sea aging in close-to-perfect conditions, these sleeping champagne bottles awoke to tell us a chapter of the story of winemaking and to reveal their extraordinary archaeometabolome and elemental diversity in the form of chemical signatures related to each individual step of champagne production.


Asunto(s)
Gusto , Vino/análisis , Arqueología , Dióxido de Carbono/química , Cromatografía Liquida , Furaldehído/análogos & derivados , Furaldehído/química , Espectroscopía de Resonancia Magnética , Reacción de Maillard , Espectrometría de Masas , Metabolómica , Espectrofotometría
6.
BMC Plant Biol ; 13: 31, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23442597

RESUMEN

BACKGROUND: Previously, we have reported the ability of thiamine (vitamin B1) to induce resistance against Plasmopara viticola in a susceptible grapevine cv. Chardonnay. However, mechanisms underlying vitamins, especially, thiamine-induced disease resistance in grapevine are still largely unknown. Here, we assessed whether thiamine could modulate phenylpropanoid pathway-derived phytoalexins in grapevine plants, as well as, the role of such secondary metabolites in thiamine-induced resistance process to P. viticola. RESULTS: Our data show that thiamine treatment elicited the expression of phenylpropanoid pathway genes in grapevine plants. The expression of these genes correlated with an accumulation of stilbenes, phenolic compounds, flavonoids and lignin. Furthermore, the total anti-oxidant potential of thiamine-treaded plants was increased by 3.5-fold higher level as compared with untreated-control plants. Four phenolic compounds are responsible of 97% of the total anti-oxidant potential of thiamine-treated plants. Among these compounds, is the caftaric acid, belonging to the hydroxy-cinnamic acids family. This element contributed, by its own, by 20% of this total anti-oxidant potential. Epifluorescence microscopy analysis revealed a concomitant presence of unbranched-altered P. viticola mycelia and stilbenes production in the leaf mesophyll of thiamine-treated inoculated plants, suggesting that stilbenes are an important component of thiamine-induced resistance in grapevine. CONCLUSION: This work is the first to show the role of thiamine, as a vitamin, in the modulation of grapevine plant secondary metabolism contributing to an enhanced resistance to P. viticola, the most destructive fungal disease in vineyards.


Asunto(s)
Oomicetos/patogenicidad , Tiamina/farmacología , Vitis/metabolismo , Vitis/microbiología , Cromatografía Líquida de Alta Presión , Resistencia a la Enfermedad , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Estilbenos/metabolismo
7.
Food Microbiol ; 33(2): 228-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23200656

RESUMEN

Geraniol produced by grape is the main precursor of terpenols which play a key role in the floral aroma of white wines. We investigated the fate of geraniol during wine fermentation by Saccharomyces cerevisiae. The volatile compounds produced during fermentation of a medium enriched with geraniol were extracted by Stir-bar sorptive extraction and analysed by GC-MS. We were able to detect and quantify geranyl acetate but also citronellyl- and neryl-acetate. The presence of these compounds partly explains the disparition of geraniol. The amounts of terpenyl esters are strain dependant. We demonstrated both by gene overexpression and gene-deletion the involvement of ATF1 enzyme but not ATF2 in the acetylation of terpenols. The affinity of ATF1 enzyme for several terpenols and for isoamyl alcohol was compared. We also demonstrated that OYE2 is the enzyme involved in geraniol to citronellol reduction. Fermenting strain deleted from OYE2 gene produces far less citronellol than wild type strain. Moreover lab strain over-expressing OYE2 allows 87% geraniol to citronellol reduction in bioconversion experiment compared to about 50% conversion with control strain.


Asunto(s)
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos , Fermentación , Eliminación de Gen , Monoterpenos/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vino/análisis , Vino/microbiología
8.
BMC Genomics ; 13: 573, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23110365

RESUMEN

BACKGROUND: Wine aroma results from the combination of numerous volatile compounds, some produced by yeast and others produced in the grapes and further metabolized by yeast. However, little is known about the consequences of the genetic variation of yeast on the production of these volatile metabolites, or on the metabolic pathways involved in the metabolism of grape compounds. As a tool to decipher how wine aroma develops, we analyzed, under two experimental conditions, the production of 44 compounds by a population of 30 segregants from a cross between a laboratory strain and an industrial strain genotyped at high density. RESULTS: We detected eight genomic regions explaining the diversity concerning 15 compounds, some produced de novo by yeast, such as nerolidol, ethyl esters and phenyl ethanol, and others derived from grape compounds such as citronellol, and cis-rose oxide. In three of these eight regions, we identified genes involved in the phenotype. Hemizygote comparison allowed the attribution of differences in the production of nerolidol and 2-phenyl ethanol to the PDR8 and ABZ1 genes, respectively. Deletion of a PLB2 gene confirmed its involvement in the production of ethyl esters. A comparison of allelic variants of PDR8 and ABZ1 in a set of available sequences revealed that both genes present a higher than expected number of non-synonymous mutations indicating possible balancing selection. CONCLUSIONS: This study illustrates the value of QTL analysis for the analysis of metabolic traits, and in particular the production of wine aromas. It also identifies the particular role of the PDR8 gene in the production of farnesyldiphosphate derivatives, of ABZ1 in the production of numerous compounds and of PLB2 in ethyl ester synthesis. This work also provides a basis for elucidating the metabolism of various grape compounds, such as citronellol and cis-rose oxide.


Asunto(s)
Compuestos Orgánicos/metabolismo , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vitis/metabolismo , Vino/microbiología , Monoterpenos Acíclicos , Alelos , Mapeo Cromosómico , Fermentación , Eliminación de Gen , Variación Genética , Redes y Vías Metabólicas , Monoterpenos/metabolismo , Odorantes , Compuestos Orgánicos/química , Sesquiterpenos/metabolismo , Vitis/química
9.
Food Microbiol ; 32(2): 243-53, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22986187

RESUMEN

There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions.


Asunto(s)
Candida/metabolismo , Metschnikowia/metabolismo , Saccharomyces/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Vino/microbiología , Candida/genética , Candida/aislamiento & purificación , Técnicas de Cocultivo , Fermentación , Metschnikowia/genética , Metschnikowia/aislamiento & purificación , Saccharomyces/genética , Saccharomyces/aislamiento & purificación , Vino/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...