Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 880: 163265, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028671

RESUMEN

Approximately 42 % of Mexico is affected by soil denudation resulting from moderate to severe sheet erosion and gullying processes. At Huasca de Ocampo (central Mexico), soil degradation has been linked to intense land use dating back to pre-Hispanic times as well as to unfavorable geological, geomorphic, and climatic conditions. Here, we quantify erosion rates with high precision at annual to multi-decadal timescales by combining, for the first time, dendrogeomorphic reconstructions and UAV-based remote sensing. To assess rates of sheet erosion and gullying processes over the longer-term erosion rates (10-60 yrs), we assessed the age and first exposure of 159 roots to determine sheet erosion rates and gullying processes. At shorter timescales (<3 yrs), we employed an Unmanned Aerial Vehicle (UAV) to develop digital surface models (DSMs) for February 2020 and September 2022. Exposed roots provided evidence of sheet erosion ranging between 2.8 and 43.6 mm yr-1 and channel widening ranging between 11 and 270 mm yr-1, with highest erosion rates found along gully slopes. The UAV-based approach pointed to intense gully headcut retreat with rates between 164.8 and 870.4 mm yr-1; within gullies, channel widening rates ranged between 88.7 and 213.6 mm yr-1 and gully incision rates were between 11.8 and 109.8 mm yr-1. The two approaches yielded very comparable results regarding gully erosion and channel widening; this underlines the potential of using exposed roots to quantifying soil degradation processes retrospectively and considerably beyond the period covered by UAV imagery.

2.
Am J Bot ; 106(12): 1536-1544, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31758552

RESUMEN

PREMISE: Fire scars on trees are created by excessive heat from a fire that kills the vascular cambium. Although, fires are one of the most important forest disturbances in Patagonia, the effects of fire on tree physiology and wood anatomy are still unknown. In this study, we hypothesized that abnormal functioning of the cambium after a fire will induce anatomical changes in the wood. We also assumed that these anatomical changes would affect xylem safety transport. METHODS: We quantified wood anatomical traits in Nothofagus pumilio, the dominant subalpine tree species of Patagonia, using two approaches: time and distance. In the first, anatomical changes in tree rings were compared before, during, and after fire occurrence. In the second, the spatial extent of these changes was evaluated with respect to the wound by measuring anatomical traits in sampling bands in two directions (0° and 45°) with respect to the onset of healing. RESULTS: Reductions in lumen diameter and vessel number were the most conspicuous changes associated with fire damage and observed in the fire ring and subsequent post-fire rings. In addition, the fire ring had more rays than in control rings. In terms of distance, anatomical changes were only restricted to short distances from the wound. CONCLUSIONS: Post-fire changes in wood anatomical traits were confined close to the wound margins. These changes might be associated with a defense strategy related to the compartmentalization of the wound and safety of water transport.


Asunto(s)
Cámbium , Incendios , Fagales , Madera , Xilema
3.
PLoS One ; 11(12): e0167767, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27911923

RESUMEN

Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical relevance.


Asunto(s)
Hojas de la Planta , Brotes de la Planta , Transpiración de Plantas/fisiología , Vitis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Brotes de la Planta/anatomía & histología , Brotes de la Planta/fisiología , Especificidad de la Especie , Vitis/anatomía & histología , Vitis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA