Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 36(12): 6017-6026, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947979

RESUMEN

Li6PS5Cl has attracted significant attention due to its high Li-ion conductivity and processability, facilitating large-scale solid-state battery applications. However, when paired with high-voltage cathodes, it experiences adverse side reactions. Li3InCl6 (LIC), known for its higher stability at high voltages and moderate Li-ion conductivity, is considered a catholyte to address the limitations of Li6PS5Cl. To extend the stability of Li6PS5Cl toward LiNi0.8Co0.15Al0.05O2 (NCA), we applied nanocrystalline LIC as a 180 nm-thick protective coating in a core-shell-like fashion (LIC@NCA) via mechanofusion. Solid-state batteries with LIC@NCA allow an initial discharge specific capacity of 148 mA h/g at 0.1C and 80% capacity retention for 200 cycles at 0.2C with a cutoff voltage of 4.2 V (vs Li/Li+), while cells without LIC coating suffers from low initial discharge capacity and poor retention. Using a wide spectrum of advanced characterization techniques, such as operando XRD, XPS, FIB-SEM, and TOF-SIMS, we reveal that the superior performance of solid-state batteries employing LIC@NCA is related to the suppression of detrimental interfacial reactions of NCA with Li6PS5Cl, delamination, and particle cracking compared to uncoated NCA.

2.
Small ; : e2401184, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884188

RESUMEN

An interplay between Pd and PdO and their spatial distribution inside the particles are relevant for numerous catalytic reactions. Using in situ time-resolved X-ray absorption spectroscopy (XAS) supported by theoretical simulations, a mechanistic picture of the structural evolution of 2.3 nm palladium nanoparticles upon their exposure to molecular oxygen is provided. XAS analysis revealed the restructuring of the fcc-like palladium surface into the 4-coordinated structure of palladium oxide upon absorption of oxygen from the gas phase and formation of core@shell Pd@PdO structures. The reconstruction starts from the low-coordinated sites at the edges of palladium nanoparticles. Formation of the PdO shell does not affect the average Pd‒Pd coordination numbers, since the decrease of the size of the metallic core is compensated by a more spherical shape of the oxidized nanoparticles due to a weaker interaction with the support. The metallic core is preserved below 200 °C even after continuous exposure to oxygen, with its size decreasing insignificantly upon increasing the temperature, while above 200 °C, bulk oxidation proceeds. The Pd‒Pd distances in the metallic phase progressively decrease upon increasing the fraction of the Pd oxide due to the alignment of the cell parameters of the two phases.

3.
Chem Sci ; 15(22): 8323-8333, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846398

RESUMEN

Growing polymers inside porous metal-organic frameworks (MOFs) can allow incoming guests to access the backbone of otherwise non-porous polymers, boosting the number and/or strength of available adsorption sites inside the porous support. In the present work, we have devised a novel post-synthetic modification (PSM) strategy that allows one to graft metal-chelating functionality onto a polymer backbone while inside MOF pores, enhancing the material's ability to recover Pt(iv) from complex liquids. For this, polydopamine (PDA) was first grown inside of a MOF, known as Fe-BTC (or MIL-100 Fe). Next, a small thiol-containing molecule, 2,3-dimercapto-1-propanol (DIP), was grafted to the PDA via a Michael addition. After the modification of the PDA, the Pt adsorption capacity and selectivity were greatly enhanced, particularly in the low concentration regime, due to the high affinity of the thiols towards Pt. Moreover, the modified composite was found to be highly selective for precious metals (Pt, Pd, and Au) over common base metals found in electronic waste (i.e., Pb, Cu, Ni, and Zn). X-ray photoelectron spectroscopy (XPS) and in situ X-ray absorption spectroscopy (XAS) provided insight into the Pt adsorption/reduction process. Last, the PSM was extended to various thiols to demonstrate the versatility of the chemistry. It is hoped that this work will open pathways for the future design of novel adsorbents that are fine-tuned for the rapid, selective retrieval of high-value and/or critical metals from complex liquids.

4.
J Phys Chem Lett ; 15(16): 4494-4500, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38634706

RESUMEN

In the last few decades, massive effort has been expended in heterogeneous catalysis to develop new materials presenting high conversion, selectivity, and stability even under high-temperature and high-pressure conditions. In this context, CO2 hydrogenation is an interesting reaction where the catalyst local structure is strongly related to the development of an active and stable material under hydrothermal conditions at T/P > 300 °C/30 bar. In order to clarify the relationship between catalyst local ordering and its activity/stability, we herein report a combined laboratory and synchrotron investigation of aliovalent element (Ce/Zn/Ga)-containing ZrO2 matrixes. The results reveal the influence of similar average structures with different short-range orderings on the catalyst properties. Moreover, a further step toward the comprehension of the oxygen vacancy formation mechanism in Ce- and Ga-ZrO2 catalysts is reported. Finally, the reported results illustrate a robust method to guide local structure determination and ultimately help to avoid overuse of the "solid solution" definition.

5.
Nat Mater ; 23(5): 680-687, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38366155

RESUMEN

Hybrid organic/inorganic materials have contributed to solve important challenges in different areas of science. One of the biggest challenges for a more sustainable society is to have active and stable catalysts that enable the transition from fossil fuel to renewable feedstocks, reduce energy consumption and minimize the environmental footprint. Here we synthesize novel hybrid materials where an amorphous oxide coating with embedded organic ligands surrounds metallic nanocrystals. We demonstrate that the hybrid coating is a powerful means to create electrocatalysts stable against structural reconstruction during the CO2 electroreduction. These electrocatalysts consist of copper nanocrystals encapsulated in a hybrid organic/inorganic alumina shell. This shell locks a fraction of the copper surface into a reduction-resistant Cu2+ state, which inhibits those redox processes responsible for the structural reconstruction of copper. The electrocatalyst activity is preserved, which would not be possible with a conventional dense alumina coating. Varying the shell thickness and the coating morphology yields fundamental insights into the stabilization mechanism and emphasizes the importance of the Lewis acidity of the shell in relation to the retention of catalyst structure. The synthetic tunability of the chemistry developed herein opens new avenues for the design of stable electrocatalysts and beyond.

6.
Small ; 20(13): e2309251, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948352

RESUMEN

Conversion of CO2 into value-added products by electrocatalysis provides a promising way to mitigate energy and environmental problems. However, it is greatly limited by the scaling relationship between the adsorption strength of intermediates. Herein, Mn and Ni single-atom catalysts, homonuclear dual-atom catalysts (DACs), and heteronuclear DACs are synthesized. Aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray absorption spectroscopy characterization uncovered the existence of the Mn─Ni pair in Mn─Ni DAC. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy reveal that Mn donated electrons to Ni atoms in Mn─Ni DAC. Consequently, Mn─Ni DAC displays the highest CO Faradaic efficiency of 98.7% at -0.7 V versus reversible hydrogen electrode (vs RHE) with CO partial current density of 16.8 mA cm-2. Density functional theory calculations disclose that the scaling relationship between the binding strength of intermediates is broken, resulting in superior performance for ECR to CO over Mn─Ni─NC catalyst.

7.
Chem Sci ; 14(47): 13908-13914, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075668

RESUMEN

Surface intermediate species and oxygen vacancy-assisted mechanism over CeO2 catalyst in the direct dimethyl carbonate (DMC) synthesis from carbon dioxide and methanol are suggested by means of transient spectroscopic methodologies in conjunction with multivariate spectral analysis. How the two reactants, i.e. CO2 and methanol, interact with the CeO2 surface and how they form decisive surface intermediates leading to DMC are unraveled by DFT-based molecular dynamics simulation by precise statistical sampling of various configurations of surface states and intermediates. The atomistic simulations and uncovered stability of different intermediate states perfectly explain the unique DMC formation profile experimentally observed upon transient operations, strongly supporting the proposed oxygen vacancy-assisted reaction mechanism.

8.
EES Catal ; 1(6): 950-960, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38013789

RESUMEN

High entropy alloys (HEAs) are an important new material class with significant application potential in catalysis and electrocatalysis. The entropy-driven formation of HEA materials requires high temperatures and controlled cooling rates. However, catalysts in general also require highly dispersed materials, i.e., nanoparticles. Only then a favorable utilization of the expensive raw materials can be achieved. Several recently reported HEA nanoparticle synthesis strategies, therefore, avoid the high-temperature regime to prevent particle growth. In our work, we investigate a system of five noble metal single-source precursors with superior catalytic activity for the oxygen reduction reaction. Combining in situ X-ray powder diffraction with multi-edge X-ray absorption spectroscopy, we address the fundamental question of how single-phase HEA nanoparticles can form at low temperatures. It is demonstrated that the formation of HEA nanoparticles is governed by stochastic principles and the inhibition of precursor mobility during the formation process favors the formation of a single phase. The proposed formation principle is supported by simulations of the nanoparticle formation in a randomized process, rationalizing the experimentally found differences between two-element and multi-element metal precursor mixtures.

9.
JACS Au ; 3(11): 3066-3075, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38034959

RESUMEN

Indium phosphide quantum dots (InP QDs) are a promising example of Restriction of Hazardous Substances directive (RoHS)-compliant light-emitting materials. However, they suffer from low quantum yield and instability upon processing under ambient conditions. Colloidal atomic layer deposition (c-ALD) has been recently proposed as a methodology to grow hybrid materials including QDs and organic/inorganic oxide shells, which possess new functions compared to those of the as-synthesized QDs. Here, we demonstrate that ZnO shells can be grown on InP QDs obtained via two synthetic routes, which are the classical sylilphosphine-based route and the more recently developed aminophosphine-based one. We find that the ZnO shell increases the photoluminescence emission only in the case of aminophosphine-based InP QDs. We rationalize this result with the different chemistry involved in the nucleation step of the shell and the resulting surface defect passivation. Furthermore, we demonstrate that the ZnO shell prevents degradation of the InP QD suspension under ambient conditions by avoiding moisture-induced displacement of the ligands from their surface. Overall, this study proposes c-ALD as a methodology for the synthesis of alternative InP-based core@shell QDs and provides insight into the surface chemistry that results in both enhanced photoluminescence and stability required for application in optoelectronic devices and bioimaging.

10.
J Am Chem Soc ; 145(38): 21040-21052, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37721732

RESUMEN

Iron-based enzymes efficiently activate molecular oxygen to perform the oxidation of methane to methanol (MTM), a reaction central to the contemporary chemical industry. Conversely, a very limited number of artificial catalysts have been devised to mimic this process. Herein, we employ the MIL-100(Fe) metal-organic framework (MOF), a material that exhibits isolated Fe sites, to accomplish the MTM conversion using O2 as the oxidant under mild conditions. We apply a diverse set of advanced operando X-ray techniques to unveil how MIL-100(Fe) can act as a catalyst for direct MTM conversion. Single-phase crystallinity and stability of the MOF under reaction conditions (200 or 100 °C, CH4 + O2) are confirmed by X-ray diffraction measurements. X-ray absorption, emission, and resonant inelastic scattering measurements show that thermal treatment above 200 °C generates Fe(II) sites that interact with O2 and CH4 to produce methanol. Experimental evidence-driven density functional theory (DFT) calculations illustrate that the MTM reaction involves the oxidation of the Fe(II) sites to Fe(III) via a high-spin Fe(IV)═O intermediate. Catalyst deactivation is proposed to be caused by the escape of CH3• radicals from the relatively large MOF pore cages, ultimately resulting in the formation of hydroxylated triiron units, as proven by valence-to-core X-ray emission spectroscopy. The O2-based MTM catalytic activity of MIL-100(Fe) in the investigated conditions is demonstrated for two consecutive reaction cycles, proving the MOF potential toward active site regeneration. These findings will desirably lay the groundwork for the design of improved MOF catalysts for the MTM conversion.

11.
ACS Appl Mater Interfaces ; 15(36): 42439-42448, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37639468

RESUMEN

Hexagonal manganites, RMnO3 (R = Sc, Y, Ho-Lu), are potential oxygen storage materials for air separation due to their reversible oxygen storage and release properties. Their outstanding ability to absorb and release oxygen at relatively low temperatures of 250-400 °C holds promise of saving energy compared to current industrial methods. Unfortunately, the low temperature of operation also implies slow kinetics of oxygen exchange in these materials, which would make them inefficient in applications such as chemical looping air separation. Here, we show that the oxidation kinetics of RMnO3 can be improved through Ti4+-doping as well as by increasing the rare earth cation size. The rate of oxygen absorption of nanocrystalline RMn1-xTixO3 (R = Ho, Dy; x = 0, 0.15) was investigated by thermogravimetric analysis, X-ray absorption near-edge structure, and high-temperature X-ray diffraction (HT-XRD) with in situ switching of atmosphere from N2 to O2. The kinetics of oxidation increases for larger R and even more with Ti4+ donor doping, as both induce expansion of the ab-plane, which reduces the electrostatic repulsion between oxygen in the lattice upon oxygen ion migration. Surface exchange rates and activation energies of oxidation were determined from changes in lattice parameters observed through HT-XRD upon in situ switching of atmosphere.

12.
Adv Mater ; 35(49): e2304158, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37522526

RESUMEN

Pyrochlore-type iron (III) hydroxy fluorides (Pyr-IHF) are appealing low-cost stationary energy storage materials due to the virtually unlimited supply of their constituent elements, their high energy densities, and fast Li-ion diffusion. However, the prohibitively high costs of synthesis and cathode architecture currently prevent their commercial use in low-cost Li-ion batteries. Herein, a facile and cost-effective dissolution-precipitation synthesis of Pyr-IHF from soluble iron (III) fluoride precursors is presented. High capacity retention by synthesized Pyr-IHF of >80% after 600 cycles at a high current density of 1 A g-1 is obtained, without elaborate electrode engineering. Operando synchrotron X-ray diffraction guides the selective synthesis of Pyr-IHF such that different water contents can be tested for their effect on the rate capability. Li-ion diffusion is found to occur in the 3D hexagonal channels of Pyr-IHF, formed by corner-sharing FeF6-x (OH)x octahedra.

13.
Angew Chem Int Ed Engl ; 62(40): e202305140, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37314832

RESUMEN

The methane-to-methanol (MtM) conversion via the oxygen looping approach using copper-exchanged zeolites has been extensively studied over the last decade. While a lot of research has focussed on maximizing yield and selectivity, little has been directed toward productivity-a metric far more meaningful for evaluating industrial potential. Using copper-exchanged zeolite omega (Cu-omega), a material highly active and selective for the MtM conversion using the isothermal oxygen looping approach, we show that this material exhibits unprecedented potential for industrial valorization. In doing so, we also present a novel methodology combining operando XAS and mass spectrometry for the screening of materials for the MtM conversion in oxygen looping mode.

14.
J Am Chem Soc ; 145(9): 5370-5383, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847799

RESUMEN

Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO2 reduction reaction (CO2RR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CO2RR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CO2RR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CO2RR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.

15.
Nat Commun ; 14(1): 501, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720860

RESUMEN

Electrocatalytic reduction of carbon monoxide into fuels or chemicals with two or more carbons is very attractive due to their high energy density and economic value. Herein we demonstrate the synthesis of a hydrophobic Cu/Cu2O sheet catalyst with hydrophobic n-butylamine layer and its application in CO electroreduction. The CO reduction on this catalyst produces two or more carbon products with a Faradaic efficiency of 93.5% and partial current density of 151 mA cm-2 at the potential of -0.70 V versus a reversible hydrogen electrode. A Faradaic efficiency of 68.8% and partial current density of 111 mA cm-2 for ethanol were reached, which is very high in comparison to all previous reports of CO2/CO electroreduction with a total current density higher than 10 mA cm-2. The as-prepared catalyst also showed impressive stability that the activity and selectivity for two or more carbon products could remain even after 100 operating hours. This work opens a way for efficient electrocatalytic conversion of CO2/CO to liquid fuels.

16.
ACS Appl Mater Interfaces ; 15(1): 806-817, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36542810

RESUMEN

Identifying thermodynamically favorable and stable non-stoichiometric metal oxides is of crucial importance for solar thermochemical (STC) fuel production via two-step redox cycles. The performance of a non-stoichiometric metal oxide depends on its thermodynamic properties, oxygen exchange capacity, and its phase stability under high-temperature redox cycling conditions. Perovskite oxides (ABO3-δ) are being considered as attractive alternatives to the state-of-the-art ceria (CeO2-δ) due to their high thermodynamic and structural tunability. However, perovskite oxides often exhibit low entropy change compared to ceria, as they generally have one only redox active site, leading to lower mass-specific fuel yields. Herein, we investigate cation-deficient Ce-substituted perovskite oxides as a new class of potential redox materials combining the advantages of perovskites and ceria. We newly synthesized the (CexSr1-x)0.95Ti0.5Mn0.5O3-δ (x = 0, 0.10, 0.15, and 0.20; CSTM) series, with dual-redox active sites comprising Ce (at the A-site) and Mn (at the B-site). By introducing a cation deficiency (∼5%), CSTM perovskite oxides with both phase purity (x ≤ 0.15) and high-temperature structural stability under STC redox cycling conditions are obtained. Thermodynamic properties are evaluated by measuring oxygen non-stoichiometry in the temperature range T = 700-1400 °C and the oxygen partial pressure range pO2 = 1-10-4 bar. The results demonstrate that CSTM perovskite oxides exhibit a composition-dependent simultaneous increase of enthalpy and entropy change with increasing Ce-substitution. (Ce0.20Sr0.80)0.95Ti0.5Mn0.5O3-δ (CSTM20) showed a combination of large entropy change of ∼141 J (mol-O)-1 K-1 and moderate enthalpy change of ∼238 kJ (mol-O)-1, thereby creating favorable conditions for thermochemical H2O splitting. Furthermore, the oxidation states and local coordination environment around Mn, Ce, and Ti sites in the pristine and reduced CSTM samples were extensively studied using X-ray absorption spectroscopy. The results confirmed that both Ce (at the A-site) and Mn (at the B-site) centers undergo simultaneous reduction during thermochemical redox cycling.

17.
Catal Sci Technol ; 12(18): 5620-5628, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36275487

RESUMEN

The thermal carburization of MoO3 nanobelts (nb) and SiO2-supported MoO3 nanosheets under a 1 : 4 mixture of CH4 : H2 yields Mo2C-nb and Mo2C/SiO2. Following this process by in situ Mo K-edge X-ray absorption spectroscopy (XAS) reveals different carburization pathways for unsupported and supported MoO3. In particular, the carburization of α-MoO3-nb proceeds via MoO2, and that of MoO3/SiO2 via the formation of highly dispersed MoO x species. Both Mo2C-nb and Mo2C/SiO2 catalyze the dry reforming of methane (DRM, 800 °C, 8 bar) but their catalytic stability differs. Mo2C-nb shows a stable performance when using a CH4-rich feed (CH4 : CO2 = 4 : 2), however deactivation due to the formation of MoO2 occurs for higher CO2 concentrations (CH4 : CO2 = 4 : 3). In contrast, Mo2C/SiO2 is notably more stable than Mo2C-nb under the CH4 : CO2 = 4 : 3 feed. The influence of the morphology of Mo2C and its dispersion on silica on the structural evolution of the catalysts under DRM is further studied by in situ Mo K-edge XAS. It is found that Mo2C/SiO2 features a higher resistance to oxidation under DRM than the highly crystalline unsupported Mo2C-nb and this correlates with an improved catalytic stability. Lastly, the oxidation of Mo in both Mo2C-nb and Mo2C/SiO2 under DRM conditions in the in situ XAS experiments leads to an increased activity of the competing reverse water gas shift reaction.

18.
J Phys Chem C Nanomater Interfaces ; 126(41): 17589-17597, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36304669

RESUMEN

Oxides are essential catalysts and supports for noble metal catalysts. Their interaction with hydrogen enables, e.g., their use as a hydrogenation catalyst. Among the oxides considered reducible, substantial differences exist in their capability to activate hydrogen and how the oxide structure transforms due to this interaction. Noble metals, like platinum, generally enhance the oxide reduction by hydrogen spillover. This work presents a systematic temperature-programmed reduction study (300 to 873 K) of iron oxide, ceria, titania, zirconia, and alumina, with and without supported platinum. For all catalysts, platinum enhances the reducibility of the oxide. However, there are pronounced differences among all catalysts.

19.
Chem Commun (Camb) ; 58(82): 11559-11562, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36165050

RESUMEN

A new solid-state method was used to introduce a furan-thiourea polymer into the pores of a MOF, Cr-BDC. Next, the activity of the new MOF-polymer composite containing Pd was assessed in the catalytic hydrodeoxygenation of vanillin, a biomass derived chemical.


Asunto(s)
Furanos , Polímeros , Benzaldehídos , Catálisis , Tiourea
20.
Chem Sci ; 13(21): 6418-6428, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35733888

RESUMEN

Using azolium-based ligands for the construction of metal-organic frameworks (MOFs) is a viable strategy to immobilize catalytically active N-heterocyclic carbenes (NHC) or NHC-derived species inside MOF pores. Thus, in the present work, a novel copper MOF referred to as Cu-Sp5-BF4, is constructed using an imidazolinium ligand, H2Sp5-BF4, 1,3-bis(4-carboxyphenyl)-4,5-dihydro-1H-imidazole-3-ium tetrafluoroborate. The resulting framework, which offers large pore apertures, enables the post-synthetic modification of the C2 carbon on the ligand backbone with methoxide units. A combination of X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ssNMR) and electron microscopy (EM), are used to show that the post-synthetic methoxide modification alters the dimensionality of the material, forming a turbostratic phase, an event that further improves the accessibility of the NHC sites promoting a second modification step that is carried out via grafting iridium to the NHC. A combination of X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) methods are used to shed light on the iridium speciation, and the catalytic activity of the Ir-NHC containing MOF is demonstrated using a model reaction, stilbene hydrogenation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...