Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gigascience ; 9(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32170312

RESUMEN

BACKGROUND: Over the past few years the variety of experimental designs and protocols for sequencing experiments increased greatly. To ensure the wide usability of the produced data beyond an individual project, rich and systematic annotation of the underlying experiments is crucial. FINDINGS: We first developed an annotation structure that captures the overall experimental design as well as the relevant details of the steps from the biological sample to the library preparation, the sequencing procedure, and the sequencing and processed files. Through various design features, such as controlled vocabularies and different field requirements, we ensured a high annotation quality, comparability, and ease of annotation. The structure can be easily adapted to a large variety of species. We then implemented the annotation strategy in a user-hosted web platform with data import, query, and export functionality. CONCLUSIONS: We present here an annotation structure and user-hosted platform for sequencing experiment data, suitable for lab-internal documentation, collaborations, and large-scale annotation efforts.


Asunto(s)
Anotación de Secuencia Molecular/métodos , Análisis de Secuencia/métodos , Programas Informáticos , Anotación de Secuencia Molecular/normas , Análisis de Secuencia/normas
2.
Mol Ecol ; 27(4): 886-897, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28746735

RESUMEN

Natural habitats are exposed to an increasing number of environmental stressors that cause important ecological consequences. However, the multifarious nature of environmental change, the strength and the relative timing of each stressor largely limit our understanding of biological responses to environmental change. In particular, early response to unpredictable environmental change, critical to survival and fitness in later life stages, is largely uncharacterized. Here, we characterize the early transcriptional response of the keystone species Daphnia magna to twelve environmental perturbations, including biotic and abiotic stressors. We first perform a differential expression analysis aimed at identifying differential regulation of individual genes in response to stress. This preliminary analysis revealed that a few individual genes were responsive to environmental perturbations and they were modulated in a stressor and genotype-specific manner. Given the limited number of differentially regulated genes, we were unable to identify pathways involved in stress response. Hence, to gain a better understanding of the genetic and functional foundation of tolerance to multiple environmental stressors, we leveraged the correlative nature of networks and performed a weighted gene co-expression network analysis. We discovered that approximately one-third of the Daphnia genes, enriched for metabolism, cell signalling and general stress response, drives transcriptional early response to environmental stress and it is shared among genetic backgrounds. This initial response is followed by a genotype- and/or condition-specific transcriptional response with a strong genotype-by-environment interaction. Intriguingly, genotype- and condition-specific transcriptional response is found in genes not conserved beyond crustaceans, suggesting niche-specific adaptation.


Asunto(s)
Daphnia/genética , Redes Reguladoras de Genes , Transcripción Genética , Animales , Secuencia Conservada , Regulación de la Expresión Génica , Genoma , Genotipo , Familia de Multigenes
3.
Aging (Albany NY) ; 9(10): 2026-2051, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-29016359

RESUMEN

Luminal epithelial cells in the breast gradually alter gene and protein expression with age, appearing to lose lineage-specificity by acquiring myoepithelial-like characteristics. We hypothesize that the luminal lineage is particularly sensitive to microenvironment changes, and age-related microenvironment changes cause altered luminal cell phenotypes. To evaluate the effects of different microenvironments on the fidelity of epigenetically regulated luminal and myoepithelial gene expression, we generated a set of lineage-specific probes for genes that are controlled through DNA methylation. Culturing primary luminal cells under conditions that favor myoepithelial propogation led to their reprogramming at the level of gene methylation, and to a more myoepithelial-like expression profile. Primary luminal cells' lineage-specific gene expression could be maintained when they were cultured as bilayers with primary myoepithelial cells. Isogenic stromal fibroblast co-cultures were unable to maintain the luminal phenotype. Mixed-age luminal-myoepithelial bilayers revealed that luminal cells adopt transcription and methylation patterns consistent with the chronological age of the myoepithelial cells. We provide evidence that the luminal epithelial phenotype is exquisitely sensitive to microenvironment conditions, and that states of aging are cell non-autonomously communicated through microenvironment cues over at least one cell diameter.


Asunto(s)
Envejecimiento , Mama/citología , Microambiente Celular , Células Epiteliales/citología , Linaje de la Célula , Técnicas de Cocultivo , Femenino , Humanos , Fenotipo , Transcriptoma
4.
Genome Res ; 25(11): 1692-702, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26294687

RESUMEN

In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified "high occupancy target" (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteins and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. From the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas de Drosophila/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN , Transfección
5.
Nat Commun ; 6: 5897, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25631608

RESUMEN

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (ß=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (ß=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (ß=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (ß=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Ayuno/sangre , Predisposición Genética a la Enfermedad , Variación Genética , Tasa de Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Población Negra/genética , Diabetes Mellitus Tipo 2/sangre , Estudios de Asociación Genética , Sitios Genéticos , Receptor del Péptido 1 Similar al Glucagón/genética , Glucosa-6-Fosfatasa/genética , Humanos , Insulina/sangre , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética
6.
Nature ; 512(7515): 393-9, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24670639

RESUMEN

Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.


Asunto(s)
Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , Empalme Alternativo/genética , Animales , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Femenino , Masculino , Anotación de Secuencia Molecular , Tejido Nervioso/metabolismo , Especificidad de Órganos , Poli A/genética , Poliadenilación , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caracteres Sexuales , Estrés Fisiológico/genética
7.
Nat Biotechnol ; 32(4): 341-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24633242

RESUMEN

The identification of full length transcripts entirely from short-read RNA sequencing data (RNA-seq) remains a challenge in the annotation of genomes. Here we describe an automated pipeline for genome annotation that integrates RNA-seq and gene-boundary data sets, which we call Generalized RNA Integration Tool, or GRIT. Applying GRIT to Drosophila melanogaster short-read RNA-seq, cap analysis of gene expression (CAGE) and poly(A)-site-seq data collected for the modENCODE project, we recovered the vast majority of previously annotated transcripts and doubled the total number of transcripts cataloged. We found that 20% of protein coding genes encode multiple protein-localization signals and that, in 20-d-old adult fly heads, genes with multiple polyadenylation sites are more common than genes with alternative splicing or alternative promoters. GRIT demonstrates 30% higher precision and recall than the most widely used transcript assembly tools. GRIT will facilitate the automated generation of high-quality genome annotations without the need for extensive manual annotation.


Asunto(s)
Mapeo Cromosómico/métodos , Genómica/métodos , Anotación de Secuencia Molecular/métodos , ARN/química , ARN/genética , Análisis de Secuencia de ARN/métodos , Animales , Drosophila melanogaster/genética , Genoma de los Insectos/genética , ARN/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA