Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Biol Lett ; 28(1): 56, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460977

RESUMEN

BACKGROUND: Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVß5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS: The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS: We show that KANK1 is not a part of the CMSC associated with integrin αVß5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION: We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.


Asunto(s)
Melanoma , Talina , Humanos , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Proteínas del Citoesqueleto/genética , Integrinas/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacología , Isoformas de Proteínas/metabolismo , Talina/genética , Talina/química , Talina/metabolismo , Línea Celular Tumoral/metabolismo
2.
Front Cell Dev Biol ; 9: 786758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977030

RESUMEN

Integrins are heterodimeric cell surface glycoproteins used by cells to bind to the extracellular matrix (ECM) and regulate tumor cell proliferation, migration and survival. A causative relationship between integrin expression and resistance to anticancer drugs has been demonstrated in different tumors, including head and neck squamous cell carcinoma. Using a Cal27 tongue squamous cell carcinoma model, we have previously demonstrated that de novo expression of integrin αVß3 confers resistance to several anticancer drugs (cisplatin, mitomycin C and doxorubicin) through a mechanism involving downregulation of active Src, increased cell migration and invasion. In the integrin αVß3 expressing Cal27-derived cell clone 2B1, αVß5 expression was also increased, but unrelated to drug resistance. To identify the integrin adhesion complex (IAC) components that contribute to the changes in Cal27 and 2B1 cell adhesion and anticancer drug resistance, we isolated IACs from both cell lines. Mass spectrometry (MS)-based proteomics analysis indicated that both cell lines preferentially, but not exclusively, use integrin α6ß4, which is classically found in hemidesmosomes. The anticancer drug resistant cell clone 2B1 demonstrated an increased level of α6ß4 accompanied with increased deposition of a laminin-332-containing ECM. Immunofluorescence and electron microscopy demonstrated the formation of type II hemidesmosomes by both cell types. Furthermore, suppression of α6ß4 expression in both lines conferred resistance to anticancer drugs through a mechanism independent of αVß3, which implies that the cell clone 2B1 would have been even more resistant had the upregulation of α6ß4 not occurred. Taken together, our results identify a key role for α6ß4-containing type II hemidesmosomes in regulating anticancer drug sensitivity.

3.
Cancers (Basel) ; 12(7)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679769

RESUMEN

Integrins are heterodimeric cell surface receptors composed of α and ß subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.

4.
Front Cell Dev Biol ; 8: 125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195252

RESUMEN

Integrins are heterodimeric glycoproteins that bind cells to extracellular matrix. Upon integrin clustering, multimolecular integrin adhesion complexes (IACs) are formed, creating links to the cell cytoskeleton. We have previously observed decreased cell migration and increased sensitivity to microtubule (MT) poisons, paclitaxel and vincristine, in the melanoma cell line MDA-MB-435S upon transfection with integrin αV-specific siRNA, suggesting a link between adhesion and drug sensitivity. To elucidate the underlying mechanism, we determined αV-dependent changes in IAC composition. Using mass spectrometry (MS)-based proteomics, we analyzed the components of isolated IACs of MDA-MB-435S cells and two MDA-MB-435S-derived integrin αV-specific shRNA-expressing cell clones with decreased expression of integrin αV. MS analysis showed that cells preferentially use integrin αVß5 for the formation of IACs. The differential analysis between MDA-MB-435S cells and clones with decreased expression of integrin αV identified key components of integrin αVß5 adhesion complexes as talins 1 and 2, α-actinins 1 and 4, filamins A and B, plectin and vinculin. The data also revealed decreased levels of several components of the cortical microtubule stabilization complex, which recruits MTs to adhesion sites (notably liprins α and ß, ELKS, LL5ß, MACF1, KANK1, and KANK2), following αV knockdown. KANK2 knockdown in MDA-MB-435S cells mimicked the effect of integrin αV knockdown and resulted in increased sensitivity to MT poisons and decreased migration. Taken together, we conclude that KANK2 is a key molecule linking integrin αVß5 IACs to MTs, and enabling the actin-MT crosstalk that is important for both sensitivity to MT poisons and cell migration.

5.
Mol Pharmacol ; 94(6): 1334-1351, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30262596

RESUMEN

Low survival rates of patients with metastatic triple-negative breast cancer (TNBC) and melanoma, in which current therapies are ineffective, emphasize the need for new therapeutic approaches. Integrin ß1 appears to be a promising target when combined with chemotherapy, but recent data have shown that its inactivation increases metastatic potential owing to the compensatory upregulation of other integrin subunits. Consequently, we analyzed the potential of integrin subunits αv, α3, or α4 as targets for improved therapy in seven TNBC and melanoma cell lines. Experiments performed in an integrin αvß1-negative melanoma cell line, MDA-MB-435S, showed that knockdown of integrin subunit αv increased sensitivity to microtubule poisons vincristine or paclitaxel and decreased migration and invasion. In the MDA-MB-435S cell line, we also identified a phenomenon in which change in the expression of one integrin subunit changes the expression of other integrins, leading to an unpredictable influence on sensitivity to anticancer drugs and cell migration, referred to as the integrin switching effect. In a panel of six TNBCs and melanoma cell lines, the contribution of integrins αv versus integrins αvß3/ß5 was assessed by the combined action of αv-specific small interfering RNA or αvß3/ß5 inhibitor cilengitide with paclitaxel. Our results suggest that, for TNBC, knockdown of integrin αv in combination with paclitaxel presents a better therapeutic option than a combination of cilengitide with paclitaxel; however, in melanoma, neither of these combinations is advisable because a decreased sensitivity to paclitaxel was observed.


Asunto(s)
Integrina alfaV/genética , Melanoma/tratamiento farmacológico , Microtúbulos/efectos de los fármacos , Venenos/farmacología , Venenos de Serpiente/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Paclitaxel/farmacología , Neoplasias de la Mama Triple Negativas/genética
6.
Nat Med ; 23(8): 945-953, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28650456

RESUMEN

Soluble urokinase plasminogen activator receptor (suPAR) independently predicts chronic kidney disease (CKD) incidence and progression. Apolipoprotein L1 (APOL1) gene variants G1 and G2, but not the reference allele (G0), are associated with an increased risk of CKD in individuals of recent African ancestry. Here we show in two large, unrelated cohorts that decline in kidney function associated with APOL1 risk variants was dependent on plasma suPAR levels: APOL1-related risk was attenuated in patients with lower suPAR, and strengthened in those with higher suPAR levels. Mechanistically, surface plasmon resonance studies identified high-affinity interactions between suPAR, APOL1 and αvß3 integrin, whereby APOL1 protein variants G1 and G2 exhibited higher affinity for suPAR-activated avb3 integrin than APOL1 G0. APOL1 G1 or G2 augments αvß3 integrin activation and causes proteinuria in mice in a suPAR-dependent manner. The synergy of circulating factor suPAR and APOL1 G1 or G2 on αvß3 integrin activation is a mechanism for CKD.


Asunto(s)
Apolipoproteínas/genética , Integrina alfaVbeta3/metabolismo , Lipoproteínas HDL/genética , Podocitos/metabolismo , Proteinuria/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Insuficiencia Renal Crónica/genética , Adolescente , Adulto , Negro o Afroamericano , Anciano , Alelos , Animales , Apolipoproteína L1 , Apolipoproteínas/metabolismo , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lipoproteínas HDL/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Proteinuria/metabolismo , Insuficiencia Renal Crónica/metabolismo , Resonancia por Plasmón de Superficie , Adulto Joven
7.
Oncotarget ; 8(17): 27754-27771, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-27487141

RESUMEN

Integrins have been suggested as possible targets in anticancer therapy. Here we show that knockdown of integrins αVß3, αVß5, α3ß1 and α4ß1 and pharmacological inhibition using a cyclo-RGD integrin αVß3/αVß5 antagonist sensitized multiple high-grade glioma cell lines to temozolomide (TMZ)-induced cytotoxicity. The greatest effect was observed in LN229 cells upon integrin ß3 silencing, which led to inhibition of the FAK/Src/Akt/NFκB signaling pathway and increased formation of γH2AX foci. The integrin ß3 knockdown led to the proteasomal degradation of Rad51, reduction of Rad51 foci and reduced repair of TMZ-induced DNA double-strand breaks by impairing homologous recombination efficiency. The down-regulation of ß3 in Rad51 knockdown (LN229-Rad51kd) cells neither further sensitized them to TMZ nor increased the number of γH2AX foci, confirming causality between ß3 silencing and Rad51 reduction. RIP1 was found cleaved and IκBα significantly less degraded in ß3-silenced/TMZ-exposed cells, indicating inactivation of NFκB signaling. The anti-apoptotic proteins Bcl-xL, survivin and XIAP were proteasomally degraded and caspase-3/-2 cleaved. Increased H2AX phosphorylation, caspase-3 cleavage, reduced Rad51 and RIP1 expression, as well as sustained IκBα expression were also observed in mouse glioma xenografts treated with the cyclo-RGD inhibitor and TMZ, confirming the molecular mechanism in vivo. Our data indicates that ß3 silencing in glioma cells represents a promising strategy to sensitize high-grade gliomas to TMZ therapy.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Glioblastoma/tratamiento farmacológico , Integrina alfaVbeta3/metabolismo , Reparación del ADN por Recombinación , Animales , Antineoplásicos Alquilantes/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Regulación hacia Abajo , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Integrina alfaVbeta3/antagonistas & inhibidores , Integrina alfaVbeta3/genética , Integrina beta3/genética , Integrina beta3/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Inhibidor NF-kappaB alfa/metabolismo , Clasificación del Tumor , Péptidos Cíclicos/farmacología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores de Vitronectina/antagonistas & inhibidores , Receptores de Vitronectina/genética , Receptores de Vitronectina/metabolismo , Transducción de Señal , Temozolomida , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Radiol Oncol ; 50(3): 280-8, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27679544

RESUMEN

BACKGROUND: In order to increase the effectiveness of cancer treatment, new compounds with potential anticancer activities are synthesized and screened. Here we present the screening of a new class of compounds, 1-(2-picolyl)-, 4-(2-picolyl)-, 1-(2-pyridyl)-, and 4-(2-pyridyl)-3-methyl-1,2,3-triazolium salts and 'parent' 1,2,3-triazole precursors. METHODS: Cytotoxic activity of new compounds was determined by spectrophotometric MTT assay on several tumour and one normal cell line. Effect of the selected compound to bind double stranded DNA (ds DNA) was examined by testing its influence on thermal stability of calf thymus DNA while its influence on cell cycle was determined by flow cytometric analysis. Generation of reactive oxygen species (ROS) was determined by addition of specific substrate 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA). RESULTS: Parent triazoles were largely inactive, while some of the triazolium salts were highly cytotoxic for HeLa cells. Triazolium salts exhibited high cell-type dependent cytotoxicity against different tumour cells. Selected compound (4-(4-methoxyphenyl)-3-methyl-1-(2-picolyl)-1H-1,2,3-triazolium hexafluorophosphate(V) (2b) was significantly more cytotoxic against tumour cells than to normal cells, with very high therapeutic index 7.69 for large cell lung carcinoma H460 cells. Additionally, this compound was similarly cytotoxic against parent laryngeal carcinoma HEp-2 cells and their drug resistant 7T subline, suggesting the potential of this compound in treatment of drug resistant cancers. Compound 2b arrested cells in the G1 phase of the cell cycle. It did not bind ds DNA, but induced ROS in treated cells, which further triggered cell death. CONCLUSIONS: Our results suggest that the 'click' triazolium salts are worthy of further investigation as anti-cancer agents.

9.
Biochim Biophys Acta ; 1863(8): 1969-78, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27108184

RESUMEN

Integrins play key roles in the regulation of tumor cell adhesion, migration, invasion and sensitivity to anticancer drugs. In the present study we investigate the mechanism of resistance of tongue squamous carcinoma cells Cal27 with de novo integrin αvß3 expression to anticancer drugs. Cal27-derived cell clones, obtained by transfection of plasmid containing integrin subunit ß3 cDNA, as compared to control cells demonstrate: expression of integrin αvß3; increased expression of integrin αvß5; increased adhesion to fibronectin and vitronectin; resistance to cisplatin, mitomycin C, doxorubicin and 5-fluorouracil; increased migration and invasion, increased amount of integrin-linked kinase (ILK) and decreased amounts of non-receptor tyrosine kinase (Src) and pSrc(Y418). Knockdown of ILK and integrin ß5 in cells expressing integrin αvß3 ruled out their involvement in drug resistance. Opposite, Src knockdown in Cal27 cells which led to a reduction in pSrc(Y418), as well as treatment with the pSrc(Y418) inhibitors dasatinib and PP2, conferred resistance to all four anticancer drugs, indicating that the loss of pSrc(Y418) is responsible for the observed effect. We identified differential integrin signaling between Cal27 and integrin αvß3-expressing cells. In Cal27 cells integrin αv heterodimers signal through pSrc(Y418) while this is not the case in integrin αvß3-expressing cells. Finally, we show that dasatinib counteracts the effect of cisplatin in two additional head and neck squamous cell carcinoma (HNSCC) cell lines Cal33 and Detroit562. Our results suggest that pSrc(Y418) inhibitors, potential drugs for cancer therapy, may reduce therapeutic efficacy if combined with chemotherapeutics, and might not be recommended for HNSCC treatment.


Asunto(s)
Carcinoma de Células Escamosas/patología , Resistencia a Antineoplásicos/fisiología , Integrina alfaVbeta3/fisiología , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/fisiología , Neoplasias de la Lengua/patología , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Cisplatino/farmacología , Dasatinib/farmacología , Doxorrubicina/farmacología , Sinergismo Farmacológico , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Genes src , Humanos , Integrina alfaVbeta3/biosíntesis , Integrina alfaVbeta3/genética , Cadenas beta de Integrinas/fisiología , Mitomicina/farmacología , Invasividad Neoplásica , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Mutación Puntual , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Interferencia de ARN , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/metabolismo
10.
Biochim Biophys Acta ; 1853(3): 685-98, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25565603

RESUMEN

BACKGROUND: Platinum compounds are potent anticancer drugs but also evoke considerable normal tissue damage. Here, we elucidate the molecular mechanisms contributing to the nephrotoxic effects of cisplatin. METHODS: We comparatively investigated the stress responses of rat kidney tubular (NRK-52E) and glomerular cells (RGE) following treatment with cisplatin (CisPt), oxaliplatin (OxaliPt) and carboplatin (CarboPt). To this end, cell viability, apoptosis, cell cycle progression, DNA damage response (DDR) and repair of DNA adducts were investigated. RESULTS: CisPt reduced the viability of tubular NRK-52E and glomerular RGE cells most efficiently. Cytotoxicity evoked by CarboPt occurred with a delay, which might be related to a retarded formation of Pt-(GpG) intrastrand crosslinks. RGE cells were more sensitive towards all platinum compounds than NRK-52E cells. Platinum drugs efficiently induced caspase-mediated apoptosis in tubular cells, while RGE cells favored G2/M arrest when treated with equitoxic platinum doses. Mitotic index of NKR-52E and RGE cells was worst affected by OxaliPt. Activation of the DDR was strikingly agent- and cell type-specific. Most comprehensive and substantial stimulation of DDR mechanisms was provoked by CisPt. Repair of Pt-(GpG) intrastrand crosslinks was best in RGE, which was reflected by high mRNA expression of nucleotide excision repair (NER) factors. CONCLUSIONS: There are substantial differences regarding the cause of sensitivity and mechanisms of DDR between tubular and glomerular cells following platinum injury. CisPt is the most potent stimulator of the DDR. We hypothesize that specific DNA adducts and thereby forcefully activated pro-toxic DDR mechanisms contribute to the exceptionally high acute nephrotoxicity of CisPt.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Daño del ADN , Glomérulos Renales/efectos de los fármacos , Túbulos Renales/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Células Cultivadas , Aductos de ADN/efectos de los fármacos , Aductos de ADN/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glomérulos Renales/citología , Glomérulos Renales/metabolismo , Túbulos Renales/citología , Túbulos Renales/metabolismo , Compuestos Organoplatinos/toxicidad , Oxaliplatino , Ratas
11.
Chemistry ; 20(52): 17296-9, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25376425

RESUMEN

Azocarboxamide (azcH) has been combined for the first time with [Ru-Cym] to generate metal complexes with N,N- and N,O-coordination mode, [(Cym)Ru(azc)Cl] and [(Cym)Ru(azcH)Cl](+) [PF6 ](-). Geometric and electronic structures of the complexes are reported along with their in vitro activities against different tumour cell lines and preliminary results on solution chemistry. Compound [(Cym)Ru(azc)Cl] exhibited remarkable cytotoxic properties. It was cell-type specific and had comparable IC50 values towards both cancer cells and their drug-resistant subline. A tenfold increase in the sensitivity towards [(Cym)Ru(azc)Cl] was noted for the tumour cells with depleted intracellular glutathione (GSH) level, suggesting the essential role of GSH in cell response to this compound.


Asunto(s)
Antineoplásicos/química , Compuestos Aza/química , Complejos de Coordinación/química , Glutatión/química , Rutenio/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Complejos de Coordinación/toxicidad , Cristalografía por Rayos X , Humanos , Modelos Moleculares
12.
PLoS One ; 9(1): e86698, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24466204

RESUMEN

Adenovirus type 5 (Ad5) is a non-enveloped DNA virus frequently used as a gene transfer vector. Efficient Ad5 cell entry depends on the availability of its primary receptor, coxsackie and adenovirus receptor, which is responsible for attachment, and integrins, secondary receptors responsible for adenovirus internalization via clathrin-mediated endocytosis. However, efficacious adenovirus-mediated transgene expression also depends on successful trafficking of Ad5 particles to the nucleus of the target cell. It has been shown that changes occurring in tumor cells during development of resistance to anticancer drugs can be beneficial for adenovirus mediated transgene expression. In this study, using an in vitro model consisting of a parental cell line, human laryngeal carcinoma HEp2 cells, and a cisplatin-resistant clone CK2, we investigated the cause of increased Ad5-mediated transgene expression in CK2 as compared to HEp2 cells. We show that the primary cause of increased Ad5-mediated transgene expression in CK2 cells is not modulation of receptors on the cell surface or change in Ad5wt attachment and/or internalization, but is rather the consequence of decreased RhoB expression. We propose that RhoB plays an important role in Ad5 post-internalization events and more particularly in Ad5 intracellular trafficking. To the best of our knowledge, this is the first study showing changed Ad5 trafficking pattern between cells expressing different amount of RhoB, indicating the role of RhoB in Ad5 intracellular trafficking.


Asunto(s)
Adenovirus Humanos/genética , Expresión Génica , Vectores Genéticos/genética , Transducción Genética , Transgenes , Proteína de Unión al GTP rhoB/genética , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Regulación de la Expresión Génica , Humanos , Integrinas/genética , Receptores Virales/metabolismo , Acoplamiento Viral , Internalización del Virus , Proteína de Unión al GTP rhoB/metabolismo
13.
Anticancer Drugs ; 25(3): 289-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24322543

RESUMEN

Previously, we described the synthesis and biological activity of a new class of anticancer molecules that preferentially target malignant cells and may serve as potential antitumor agents. Among several synthesized agents, we selected 3-acetyl-1,3-bis(2-chloro-4-nitrophenyl)-1-triazene (8b) as a representative of the group of 4-nitro-substituted 1,3-diaryltriazenes. The aim of this study was to further investigate the mechanism of cell response to the 8b compound. The HeLa human cervical carcinoma cell line was used as an experimental model to further investigate the mechanism of cell response to the 8b compound. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay was used to address cell survival, and western blot (immunoblotting) was used for the expression of relevant proteins after 8b drug exposure. The pretreatment of HeLa cells with salubrinal, a specific inhibitor of endoplasmic reticulum (ER) stress, confirmed the importance of ER stress in apoptosis induced by 8b. We also demonstrate that 8b triggers the activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) in a time-dependent and dose-dependent manner. Moreover, the inhibition of SAPK/JNK activity by JNK II before 8b treatment increased the survival rate of HeLa cells relative to survival in the presence of 8b alone, indicating the importance of this kinase in cell death. The simultaneous inhibition of ER stress induction and SAPK/JNK activation increased the survival of HeLa cells upon 8b treatment more than inhibition of both pathways independently, suggesting the separate triggering of both signaling pathways. Our data indicate that cytotoxic activity of the novel compound 8b is based on its ability to induce ER stress and SAPK/JNK signaling pathways independently, driving cells to cell death.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Triazenos/farmacología , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática , Glutatión/metabolismo , Células HeLa , Humanos , Especies Reactivas de Oxígeno/metabolismo
14.
Acta Chim Slov ; 60(4): 842-52, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24362988

RESUMEN

To increase the effectiveness of cancer treatment, more effective anti-cancer drugs, as well as the new improved strategies of cancer treatment, are urgently needed. Our previous results have shown that various diazenes are cytotoxic to different tumor cells and can even revert the resistance to cisplatin and vincristine. We also demonstrated that unsymmetrical diazenedicarboxamides 1 and 2 exhibited promising cytotoxicity. The aim of the present study was to synthesize new diazenedicarboxamides with acceptable solubility and good cytotoxicity. Here we report the synthesis and biological evaluation of new N,N'-disubstituted diazenedicarboxamides. We found that a modification of either 1 or 2 led to the more active compounds. The most effective among them was diazenedicarboxamide 11, which can be considered as a new potential anticancer agent for the tumors of different origin, as well as for the drug resistant tumors.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Compuestos Azo/química , Compuestos Azo/farmacología , Proliferación Celular/efectos de los fármacos , Ácidos Dicarboxílicos/química , Muerte Celular/efectos de los fármacos , Células HeLa , Humanos , Estructura Molecular
15.
Acta Chim Slov ; 60(2): 368-74, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23878941

RESUMEN

Construction of a library of structurally diverse diazenecarboxamide-extended cis-[Pt(2-picolyl-1,2,3-triazole)Cl2,] and cis-[Pt(propan-1,3-diamine)CBDCA] (CBDCA = 1,1 -cyclobutanedicarboxylate) complexes 1-4 is described. These compounds retain oxidative properties of parent diazenecarboxamides against glutathione as demonstrated by NMR spectroscopy and high resolution mass spectrometry experiments. Cytotoxic activity of 1-4 was investigated against human cervical carcinoma HeLa cells. Four library members were found to possess moderate cytotoxic activity. Some model compounds were also examined, returning [PtCl2L2] (L = 1-(2-picolyl)-4-phenyl-1H-1,2,3-triazole) as the most potent under this investigation with IC50 of 19.05 microM, comparable to that of cisplatin (IC50 = 16.3 microM).


Asunto(s)
Amidas/química , Antineoplásicos/química , Carboplatino/análogos & derivados , Cisplatino/análogos & derivados , Diseño de Fármacos , Amidas/farmacología , Antineoplásicos/farmacología , Carboplatino/química , Carboplatino/farmacología , Cromatografía Liquida , Cisplatino/química , Cisplatino/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
16.
Life Sci ; 89(7-8): 241-9, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21712047

RESUMEN

AIMS: Coxsackie and adenovirus receptor (CAR) is a tumor suppressor and a primary receptor for adenovirus type 5 (Ad5). Our study aims to examine the influence of forced expression of CAR in rhabdomyosarcoma cells (RD) on expression levels of integrins implicated in Ad5 entry, and the effect of CAR on cell-extracellular matrix adhesion and migration. MAIN METHODS: CAR expressing clones were established from RD cells by stable transfection. Flow cytometry was used to evaluate the expression of CAR and integrins. Adhesion was measured in plates previously coated with vitronectin or fibronectin. Boyden chambers were used to investigate migration. Transfection of cells with siRNA was used to achieve integrin silencing. Ad5-mediated transgene expression was measured by ß-gal staining. KEY FINDINGS: Increased expression of CAR in RD cells reduces the expression of αvß3 and αvß5 integrins. Cells overexpressing CAR exhibit significantly reduced adhesion to vitronectin and fibronectin, and reduced cell migration. Specifically silencing αvß3 integrin in RD cells reduced cell migration indicating that reduced migration could be the consequence of αvß3 integrin downregulation. This study also demonstrates the negative effect of reduced levels of αvß3 and αvß5 integrins on Ad5-mediated transgene expression with Ad5 retargeted to αv integrins. SIGNIFICANCE: The pharmacological upregulation of CAR aimed to increase Ad5-mediated transgene expression may actually downregulate αvß3 and αvß5 integrins and thus alter Ad5-mediated gene transfer. The mechanism of decreased cell migration, a prerequisite for metastasis and invasion, due to increased CAR expression may be explained by reduced αvß3 integrin expression.


Asunto(s)
Regulación Viral de la Expresión Génica , Integrina alfaVbeta3/genética , Receptores Virales/genética , Receptores de Vitronectina/genética , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Regulación hacia Abajo , Humanos , Integrina alfaVbeta3/metabolismo , Receptores Virales/metabolismo , Receptores de Vitronectina/metabolismo , Rabdomiosarcoma , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA