Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(10): e0310812, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39383128

RESUMEN

In a rapidly changing world, where species conservation needs vary by local habitat, concentrated conservation efforts at small spatial scales can be critical. Bats provide an array of value to the ecosystems they inhabit; many bat species are also of conservation concern. San Diego County, California, contains 22 of the 41 bat species that occur in the United States, 16 of which are on conservation watchlists. Thus, management of bat communities in San Diego County is a pressing need. Because bats exploit vast areas of the landscape and historical sampling strategies have shifted over time, a standardized way of prioritizing areas of the landscape for management would provide an integral asset to bat conservation. We leveraged long-term bat community survey data from sampling areas across San Diego County to prioritize areas with the most management need. We calculated two types of scores: species scores and threat scores. Species scores incorporated richness and conservation status, and threat scores included landscape level threats that bats could encounter. We found that urbanization, the presence of artificial lights, and areas sampled on unconserved land were all significantly associated with decreases in species richness. Further, using species and threat scores, each sampling area was placed into one of four conservation categories, in order from greatest to least conservation need, ranging from highest priority (high species score, high threat score) to lowest (low species score, low threat score). Additionally, we focused on sampling areas in which Townsend's big-eared bat (Corynorhinus townsendii) and/or pallid bat (Antrozous pallidus) occurred. These two species are of exceptional conservation concern in San Diego County and across the western United States. We identified urbanization, the presence of artificial lights, and areas sampled on unconserved land as threats that were all significantly associated with the absence of Townsend's big-eared bat, but not pallid bat. The strategy, methodology, and solutions proposed in our study should assist bat conservation and management efforts wherever bats occur, and can be extended to other species that require conservation attention.


Asunto(s)
Biodiversidad , Quirópteros , Conservación de los Recursos Naturales , Ecosistema , Quirópteros/fisiología , Animales , Conservación de los Recursos Naturales/métodos , California
2.
Ecol Evol ; 13(2): e9645, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36744076

RESUMEN

Parasites are integral parts of ecosystem function and important drivers of evolutionary processes. Characterizing ectoparasite diversity is fundamental to studies of host-parasite interactions, evolution, and conservation, and also for understanding emerging disease threats for some vector borne pathogens. With more than 1400 species, bats represent the second most speciose mammalian clade, but their ectoparasite fauna are poorly known for most species. We sequenced mitochondrial Cytochrome Oxidase C subunit I and nuclear 18S ribosomal gene fragments, and used Bayesian phylogenetic analyses to characterize ectoparasite taxon identity and diversity for 17 species of parasitized bats sampled along the Baja California peninsula and in Northwestern Mexico. The sequence data revealed multiple novel lineages of bat bugs (Cimicidae), flies (Nycteribiidae and Streblidae), and ticks (Argasidae). Within families, the new linages showed more than 10% sequence divergence, which is consistent with separation at least at the species level. Both families of bat flies showed host specificity, particularly on Myotis species. We also identified new records for the Baja peninsula of one tick (Carios kelleyi), and of five Streblid bat fly species. One Nycteribiid bat fly haplotype from Pallid bat (Antrozous pallidus) hosts was found throughout the peninsula, suggesting potential long distance co-dispersal with hosts. Different bat bug and tick communities were found in the north and south of the peninsula. This study is the first systematic survey of bat ectoparasites in the Baja California peninsula, revealing novel lineages that are highly genetically differentiated from other parts of North America. For some ectoparasite species, haplotype distributions may reflect patterns of bat migration. This work is a first step in characterizing ectoparasite diversity over the Baja California peninsula, and understanding how ecological and evolutionary interactions shape bat ectoparasite communities among host species in different parts of their ranges.

3.
Ecol Evol ; 8(12): 6124-6132, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29988435

RESUMEN

The arroyo southwestern toad is a specialized and federally endangered amphibian endemic to the coastal plains and mountains of central and southern California and northwestern Baja California. It is largely unknown how long these toads live in natural systems, how their population demographics vary across occupied drainages, and how hydrology affects age structure. We used skeletochronology to estimate the ages of adult arroyo toads in seven occupied drainages with varying surface water hydrology in southern California. We processed 179 adult toads with age estimates between 1 and 6 years. Comparisons between skeletochronological ages and known ages of PIT tagged toads showed that skeletochronology likely underestimated toad age by up to 2 years, indicating they may live to 7 or 8 years, but nonetheless major patterns were evident. Arroyo toads showed sexual size dimorphism with adult females reaching a maximum size of 12 mm greater than males. Population age structure varied among the sites. Age structure at sites with seasonally predictable surface water was biased toward younger individuals, which indicated stable recruitment for these populations. Age structures at the ephemeral sites were biased toward older individuals with cohorts roughly corresponding to higher rainfall years. These populations are driven by surface water availability, a stochastic process, and thus more unstable. Based on our estimates of toad ages, climate predictions of extreme and prolonged drought events could mean that the number of consecutive dry years could surpass the maximum life span of toads making them vulnerable to extirpation, especially in ephemeral freshwater systems. Understanding the relationship between population demographics and hydrology is essential for predicting species resilience to projected changes in weather and rainfall patterns. The arroyo toad serves as a model for understanding potential responses to climatic and hydrologic changes in Mediterranean stream systems. We recommend development of adaptive management strategies to address these threats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA