Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
J Pathol ; 261(4): 455-464, 2023 12.
Article En | MEDLINE | ID: mdl-37792603

Karyomegalic interstitial nephropathy (KIN) has been reported as an incidental finding in patients with childhood cancer treated with ifosfamide. It is defined by the presence of tubular epithelial cells (TECs) with enlarged, irregular, and hyperchromatic nuclei. Cellular senescence has been proposed to be involved in kidney fibrosis in hereditary KIN patients. We report that KIN could be diagnosed 7-32 months after childhood cancer diagnosis in 6/6 consecutive patients biopsied for progressive chronic kidney disease (CKD) of unknown cause between 2018 and 2021. The morphometry of nuclear size distribution and markers for DNA damage (γH2AX), cell-cycle arrest (p21+, Ki67-), and nuclear lamina decay (loss of lamin B1), identified karyomegaly and senescence features in TECs. Polyploidy was assessed by chromosome fluorescence in situ hybridization (FISH). In all six patients the number of p21-positive TECs far exceeded the typically small numbers of truly karyomegalic cells, and p21-positive TECs contained less lysozyme, testifying to defective resorption, which explains the consistently observed low-molecular-weight (LMW) proteinuria. In addition, polyploidy of TEC was observed to correlate with loss of lysozyme staining. Importantly, in the five patients with the largest nuclei, the percentage of p21-positive TECs tightly correlated with estimated glomerular filtration rate loss between biopsy and last follow-up (R2 = 0.93, p < 0.01). We conclude that cellular senescence is associated with tubular dysfunction and predicts CKD progression in childhood cancer patients with KIN and appears to be a prevalent cause of otherwise unexplained CKD and LMW proteinuria in children treated with DNA-damaging and cell stress-inducing therapy including ifosfamide. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Neoplasms , Nephritis, Interstitial , Renal Insufficiency, Chronic , Humans , Child , Nephritis, Interstitial/genetics , Muramidase/genetics , Ifosfamide , In Situ Hybridization, Fluorescence , Neoplasms/pathology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/complications , Proteinuria/pathology , Kidney/pathology , Biopsy , Cellular Senescence , Polyploidy
2.
Front Cell Dev Biol ; 9: 653138, 2021.
Article En | MEDLINE | ID: mdl-34055783

Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.

3.
Clin J Am Soc Nephrol ; 15(9): 1279-1286, 2020 09 07.
Article En | MEDLINE | ID: mdl-32855195

BACKGROUND AND OBJECTIVES: A genetic cause can be identified for an increasing number of pediatric and adult-onset kidney diseases. Preimplantation genetic testing (formerly known as preimplantation genetic diagnostics) is a reproductive technology that helps prospective parents to prevent passing on (a) disease-causing mutation(s) to their offspring. Here, we provide a clinical overview of 25 years of preimplantation genetic testing for monogenic kidney disease in The Netherlands. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This is a retrospective cohort study of couples counseled on preimplantation genetic testing for monogenic kidney disease in the national preimplantation genetic testing expert center (Maastricht University Medical Center+) from January 1995 to June 2019. Statistical analysis was performed through chi-squared tests. RESULTS: In total, 98 couples were counseled regarding preimplantation genetic testing, of whom 53% opted for preimplantation genetic testing. The most frequent indications for referral were autosomal dominant polycystic kidney disease (38%), Alport syndrome (26%), and autosomal recessive polycystic kidney disease (9%). Of couples with at least one preimplantation genetic testing cycle with oocyte retrieval, 65% experienced one or more live births of an unaffected child. Of couples counseled, 38% declined preimplantation genetic testing for various personal and technical reasons. CONCLUSIONS: Referrals, including for adult-onset disease, have increased steadily over the past decade. Though some couples decline preimplantation genetic testing, in the couples who proceed with at least one preimplantation genetic testing cycle, almost two thirds experienced at least one live birth rate.


Genetic Testing , Kidney Diseases/genetics , Mutation , Preimplantation Diagnosis , Reproductive Techniques, Assisted , Adult , Female , Genetic Counseling , Genetic Predisposition to Disease , Humans , Kidney Diseases/diagnosis , Male , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/genetics , Netherlands , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Recessive/diagnosis , Polycystic Kidney, Autosomal Recessive/genetics , Predictive Value of Tests , Pregnancy , Retrospective Studies , Risk Factors , Young Adult
4.
J Proteomics ; 192: 27-36, 2019 02 10.
Article En | MEDLINE | ID: mdl-30071318

Nephronophthisis is one of the leading genetic causes of end-stage renal disease in childhood. Early diagnostics and prognostics for nephronophthisis are currently limited. We aimed to identify non-invasive protein biomarkers for nephronophthisis in urinary extracellular vesicles. Extracellular vesicles were isolated from urine of 12 patients with a nephronophthisis-related ciliopathy and 12 age- and gender-matched controls, followed by in-depth label-free LC-MS/MS proteomics analysis of gel fractionated extracellular vesicle proteins. Supervised cluster analysis of proteomic profiles separated patients from controls. We identified 156 differentially expressed proteins with fold change ≥4 in patients compared to controls (P < .05). Importantly, expression levels of discriminating proteins were correlated with chronic kidney disease stage, suggesting possible applications for urinary extracellular vesicle biomarkers in prognostics for nephronophthisis. Enrichment analysis of gene ontology terms revealed GO terms including signaling, actin cytoskeleton and endocytosis among the downregulated proteins in patients, whereas terms related to response to wounding and extracellular matrix organization were enriched among upregulated proteins. Our findings represent the first step towards a non-invasive diagnostic test for nephronophthisis. Further research is needed to determine specificity of the candidate biomarkers. In conclusion, proteomic profiles of urinary extracellular vesicles differentiate nephronophthisis-related ciliopathy patients from healthy controls. SIGNIFICANCE: Nephronophthisis is an important cause of end-stage renal disease in children and is associated with an average diagnostic delay of 3.5 years. This is the first study investigating candidate biomarkers for nephronophthisis using global proteomics analysis of urinary extracellular vesicles in patients with nephronophthisis compared to control individuals. We show that measuring protein markers in urinary extracellular vesicles is a promising approach for non-invasive early diagnostics of nephronophthisis.


Ciliopathies/urine , Extracellular Vesicles/metabolism , Kidney Diseases, Cystic/urine , Kidney Failure, Chronic/urine , Proteome/metabolism , Adolescent , Adult , Child , Female , Humans , Male
5.
Hum Mol Genet ; 28(5): 778-795, 2019 03 01.
Article En | MEDLINE | ID: mdl-30388224

Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.


Congenital Abnormalities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Kidney Diseases/congenital , Kidney/abnormalities , Kinesins/genetics , Loss of Function Mutation , Microcephaly/genetics , Oncogene Proteins/genetics , Animals , Congenital Abnormalities/metabolism , Cytokinesis/genetics , Disease Models, Animal , Female , Fluorescent Antibody Technique , Genes, Lethal , Genetic Association Studies/methods , Genetic Loci , Humans , Kidney/metabolism , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kinesins/chemistry , Kinesins/metabolism , Male , Microcephaly/metabolism , Microcephaly/pathology , Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Pedigree , Phenotype , Structure-Activity Relationship , Zebrafish
6.
Pediatr Nephrol ; 33(10): 1701-1712, 2018 10.
Article En | MEDLINE | ID: mdl-29974258

BACKGROUND: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling. METHODS: Forty patients from 36 families with nephronophthisis-related ciliopathy were recruited at university medical centers and online. Comprehensive clinical and genotypic data were recorded. Patients without molecular diagnosis were offered genetic analysis. RESULTS: Of 40 patients, 45% had isolated nephronophthisis, 48% syndromic diagnosis, and 7% nephronophthisis with extrarenal features not constituting a recognizable syndrome. Patients developed ESRD at median 13 years (range 5-47). Median age of symptom onset was 9 years in both isolated and syndromic forms (range 5-26 vs. 5-33). Common presenting symptoms were fatigue (42%), polydipsia/polyuria (33%), and hypertension (21%). Renal ultrasound showed small-to-normal-sized kidneys, increased echogenicity (65%), cysts (43%), and abnormal corticomedullary differentiation (32%). Renal biopsies in eight patients showed nonspecific signs of chronic kidney disease (CKD). Twenty-three patients (58%) had genetic diagnosis upon inclusion. Thirteen of those without a genetic diagnosis gave consent for genetic testing, and a cause was identified in five (38%). CONCLUSIONS: Nephronophthisis is genetically and phenotypically heterogeneous and should be considered in children and young adults presenting with persistent fatigue and polyuria, and in all patients with unexplained CKD. As symptom onset can occur into adulthood, presymptomatic monitoring of kidney function in syndromic ciliopathy patients should continue until at least age 30.


Ciliopathies/diagnosis , Genetic Counseling , Genetic Testing , Kidney Diseases, Cystic/congenital , Kidney Failure, Chronic/prevention & control , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Adult , Age of Onset , Biopsy , Child , Ciliopathies/complications , Ciliopathies/genetics , Ciliopathies/pathology , Cytoskeletal Proteins , Delayed Diagnosis/prevention & control , Female , Humans , Kidney/diagnostic imaging , Kidney/pathology , Kidney Diseases, Cystic/complications , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Failure, Chronic/etiology , Male , Membrane Proteins/genetics , Middle Aged , Netherlands , Registries/statistics & numerical data , Time Factors , Ultrasonography , Exome Sequencing , Young Adult
7.
Eur J Hum Genet ; 24(12): 1752-1760, 2016 12.
Article En | MEDLINE | ID: mdl-27530628

The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C];[1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD.


Codon, Nonsense , NIMA-Related Kinase 1/genetics , Orofaciodigital Syndromes/genetics , Alternative Splicing , Cells, Cultured , Child , Cilia/pathology , Exome , Fibroblasts/metabolism , Fibroblasts/pathology , Heterozygote , Humans , Infant , Male , Orofaciodigital Syndromes/pathology , Siblings
8.
Nat Rev Nephrol ; 12(8): 472-83, 2016 08.
Article En | MEDLINE | ID: mdl-27374918

Next-generation sequencing (NGS) has led to the identification of previously unrecognized phenotypes associated with classic kidney disease genes. In addition to improving diagnostics for genetically heterogeneous diseases and enabling a faster rate of gene discovery, NGS has enabled an expansion and redefinition of nephrogenetic disease categories. Findings from these studies raise the question of whether disease diagnoses should be made on clinical grounds, on genetic evidence or a combination thereof. Here, we discuss the major kidney disease-associated genes and gene categories for which NGS has expanded the phenotypic spectrum. For example, COL4A3-5 genes, which are classically associated with Alport syndrome, are now understood to also be involved in the aetiology of focal segmental glomerulosclerosis. DGKE, which is associated with nephrotic syndrome, is also mutated in patients with atypical haemolytic uraemic syndrome. We examine how a shared genetic background between diverse clinical phenotypes can provide insight into the function of genes and novel links with essential pathophysiological mechanisms. In addition, we consider genetic and epigenetic factors that contribute to the observed phenotypic heterogeneity of kidney diseases and discuss the challenges in the interpretation of genetic data. Finally, we discuss the implications of the expanding phenotypic spectra associated with kidney disease genes for clinical practice, genetic counselling and personalized care, and present our recommendations for the use of NGS-based tests in routine nephrology practice.


Kidney Diseases/genetics , Glomerulosclerosis, Focal Segmental/genetics , High-Throughput Nucleotide Sequencing , Humans , Kidney Diseases/classification , Kidney Diseases/diagnosis , Mutation , Nephritis, Hereditary/genetics , Phenotype
9.
Am J Med Genet A ; 170(6): 1566-9, 2016 06.
Article En | MEDLINE | ID: mdl-26892345

We report an 11-year-old girl with mild intellectual disability, skeletal anomalies, congenital heart defect, myopia, and facial dysmorphisms including an extra incisor, cup-shaped ears, and a preauricular skin tag. Array comparative genomic hybridization analysis identified a de novo 4.5-Mb microdeletion on chromosome 14q24.2q24.3. The deleted region and phenotype partially overlap with previously reported patients. Here, we provide an overview of the literature on 14q24 microdeletions and further delineate the associated phenotype. We performed exome sequencing to examine other causes for the phenotype and queried genes present in the 14q24.2q24.3 microdeletion that are associated with recessive disease for variants in the non-deleted allele. The deleted region contains 65 protein-coding genes, including the ciliary gene IFT43. Although Sanger and exome sequencing did not identify variants in the second IFT43 allele or in other IFT complex A-protein-encoding genes, immunocytochemistry showed increased accumulation of IFT-B proteins at the ciliary tip in patient-derived fibroblasts compared to control cells, demonstrating defective retrograde ciliary transport. This could suggest a ciliary defect in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc.


Carrier Proteins/genetics , Chromosome Deletion , Chromosomes, Human, Pair 14 , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Myopia/genetics , Phenotype , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Child , Comparative Genomic Hybridization , Exome , Female , Fibroblasts/metabolism , Gene Expression , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans
10.
Cilia ; 4: 8, 2015.
Article En | MEDLINE | ID: mdl-26034581

BACKGROUND: Ciliopathies give rise to a multitude of organ-specific pathologies; obtaining relevant primary patient material is useful for both diagnostics and research. However, acquisition of primary ciliated cells from patients, particularly pediatric patients, presents multiple difficulties. Biopsies and blood samples are invasive, and patients (and their parents) may be reluctant to travel to medical centers, especially for research purposes. We sought to develop non-invasive methods of obtaining viable and ciliated primary cells from ciliopathy patients which could be obtained in the home environment. FINDINGS: We introduce two methods for the non-invasive acquisition of primary ciliated cells. In one approach, we collected spontaneously shed deciduous (milk) teeth from children. Fibroblast-like cells were observed after approximately 2 weeks of culture of fragmented teeth. Secondly, urine samples were collected from children or adults. Cellular content was isolated and after approximately 1 week, renal epithelial cells were observed. Both urine and tooth-derived cells ciliate and express ciliary proteins visible with immunofluorescence. Urine-derived renal epithelial cells (URECs) are amenable to 3D culturing, siRNA knockdown, and ex vivo drug testing. CONCLUSIONS: As evidence continues to accumulate showing that the primary cilium has a central role in development and disease, the need for readily available and ciliated patient cells will increase. Here, we introduce two methods for the non-invasive acquisition of cells with primary cilia. We believe that these cells can be used for further ex vivo study of ciliopathies and in the future, for personalized medicine.

11.
PLoS Genet ; 10(10): e1004594, 2014 Oct.
Article En | MEDLINE | ID: mdl-25340510

We recently reported that centrosomal protein 164 (CEP164) regulates both cilia and the DNA damage response in the autosomal recessive polycystic kidney disease nephronophthisis. Here we examine the functional role of CEP164 in nephronophthisis-related ciliopathies and concomitant fibrosis. Live cell imaging of RPE-FUCCI (fluorescent, ubiquitination-based cell cycle indicator) cells after siRNA knockdown of CEP164 revealed an overall quicker cell cycle than control cells, although early S-phase was significantly longer. Follow-up FACS experiments with renal IMCD3 cells confirm that Cep164 siRNA knockdown promotes cells to accumulate in S-phase. We demonstrate that this effect can be rescued by human wild-type CEP164, but not disease-associated mutants. siRNA of CEP164 revealed a proliferation defect over time, as measured by CyQuant assays. The discrepancy between accelerated cell cycle and inhibited overall proliferation could be explained by induction of apoptosis and epithelial-to-mesenchymal transition. Reduction of CEP164 levels induces apoptosis in immunofluorescence, FACS and RT-QPCR experiments. Furthermore, knockdown of Cep164 or overexpression of dominant negative mutant allele CEP164 Q525X induces epithelial-to-mesenchymal transition, and concomitant upregulation of genes associated with fibrosis. Zebrafish injected with cep164 morpholinos likewise manifest developmental abnormalities, impaired DNA damage signaling, apoptosis and a pro-fibrotic response in vivo. This study reveals a novel role for CEP164 in the pathogenesis of nephronophthisis, in which mutations cause ciliary defects coupled with DNA damage induced replicative stress, cell death, and epithelial-to-mesenchymal transition, and suggests that these events drive the characteristic fibrosis observed in nephronophthisis kidneys.


Cilia/genetics , Fibrosis/genetics , Kidney Diseases, Cystic/genetics , Microtubule Proteins/genetics , Animals , Apoptosis/genetics , Cell Cycle/genetics , Cilia/pathology , DNA Damage/genetics , Epithelial-Mesenchymal Transition , Fibrosis/pathology , Gene Knockdown Techniques , Humans , Kidney Diseases, Cystic/pathology , Microtubule Proteins/biosynthesis , RNA, Small Interfering , Signal Transduction , Zebrafish
12.
Nat Rev Nephrol ; 10(8): 433-44, 2014 Aug.
Article En | MEDLINE | ID: mdl-24914583

The advent of next-generation sequencing technologies has enabled genetic nephrology research to move beyond single gene analysis to the simultaneous investigation of hundreds of genes and entire pathways. These new sequencing approaches have been used to identify and characterize causal factors that underlie inherited heterogeneous kidney diseases such as nephronophthisis and congenital anomalies of the kidney and urinary tract. In this Review, we describe the development of next-generation sequencing in basic and clinical research and discuss the implementation of this novel technology in routine patient management. Widespread use of targeted and nontargeted approaches for gene identification in clinical practice will require consistent phenotyping, appropriate disease modelling and collaborative efforts to combine and integrate data analyses. Next-generation sequencing is an exceptionally promising technique that has the potential to improve the management of patients with inherited kidney diseases. However, identifying the molecular mechanisms that lead to renal developmental disorders and ciliopathies is difficult. A major challenge in the near future will be how best to integrate data obtained using next-generation sequencing with personalized medicine, including use of high-throughput disease modelling as a tool to support the clinical diagnosis of kidney diseases.


High-Throughput Nucleotide Sequencing/methods , Renal Insufficiency, Chronic/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cytoskeletal Proteins , Disclosure/ethics , Humans , Incidental Findings , Kidney/abnormalities , Kidney/physiology , Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Renal Insufficiency, Chronic/diagnosis , TRPP Cation Channels/genetics , Urinary Tract/abnormalities , Urogenital Abnormalities , Vesico-Ureteral Reflux/genetics
...