Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Space Sci Rev ; 218(5): 42, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855211

RESUMEN

We review recent observations and modeling developments on the subject of galactic cosmic rays through the heliosphere and in the Very Local Interstellar Medium, emphasizing knowledge that has accumulated over the past decade. We begin by highlighting key measurements of cosmic-ray spectra by Voyager, PAMELA, and AMS and discuss advances in global models of solar modulation. Next, we survey recent works related to large-scale, long-term spatial and temporal variations of cosmic rays in different regimes of the solar wind. Then we highlight new discoveries from beyond the heliopause and link these to the short-term evolution of transients caused by solar activity. Lastly, we visit new results that yield interesting insights from a broader astrophysical perspective.

2.
Nature ; 454(7200): 71-4, 2008 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18596802

RESUMEN

Voyager 2 crossed the solar wind termination shock at 83.7 au in the southern hemisphere, approximately 10 au closer to the Sun than found by Voyager 1 in the north. This asymmetry could indicate an asymmetric pressure from an interstellar magnetic field, from transient-induced shock motion, or from the solar wind dynamic pressure. Here we report that the intensity of 4-5 MeV protons accelerated by the shock near Voyager 2 was three times that observed concurrently by Voyager 1, indicating differences in the shock at the two locations. (Companion papers report on the plasma, magnetic field, plasma-wave and lower energy particle observations at the shock.) Voyager 2 did not find the source of anomalous cosmic rays at the shock, suggesting that the source is elsewhere on the shock or in the heliosheath. The small intensity gradient of Galactic cosmic ray helium indicates that either the gradient is further out in the heliosheath or the local interstellar Galactic cosmic ray intensity is lower than expected.

3.
Nature ; 426(6962): 48-51, 2003 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-14603312

RESUMEN

The spacecraft Voyager 1 is at a distance greater than 85 au from the Sun, in the vicinity of the termination shock that marks the abrupt slowing of the supersonic solar wind and the beginning of the extended and unexplored distant heliosphere. This shock is expected to accelerate 'anomalous cosmic rays', as well as to re-accelerate Galactic cosmic rays and low-energy particles from the inner Solar System. Here we report a significant increase in the numbers of energetic ions and electrons that persisted for seven months beginning in mid-2002. This increase differs from any previously observed in that there was a simultaneous increase in Galactic cosmic ray ions and electrons, anomalous cosmic rays and low-energy ions. The low-intensity level and spectral energy distribution of the anomalous cosmic rays, however, indicates that Voyager 1 still has not reached the termination shock. Rather, the observed increase is an expected precursor event. We argue that the radial anisotropy of the cosmic rays is expected to be small in the foreshock region, as is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...