Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Curr Opin Cell Biol ; 89: 102395, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970837

RESUMEN

The exocytic and endocytic intracellular trafficking pathways in innate immune cells are known for mediating the secretion of key inflammatory mediators or the internalization of growth factors, nutrients, antigens, cell debris, pathogens and even therapeutics, respectively. Inside cells, these pathways are intertwined as an elaborate network that supports the regulation of immune functions. Endosomal membranes host dynamic platforms for molecular complexes that control signaling and inflammatory responses. High content screens, coupled with elegant microscopy across the scale of resolving molecular complexes to tracking live cellular organelles, have been employed to generate the studies highlighted here. With a focus on deactivation of STING, scaffolding by SLC15A4/TASL complexes and macropinosome shrinkage via the chloride channel protein TMEM206, new studies are identifying molecules, molecular interactions and mechanisms for immune regulation throughout endosomal pathways.

2.
Cells ; 13(2)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38247856

RESUMEN

BACKGROUND: Azithromycin (AZM) is widely being used for treating patients with cystic fibrosis (pwCF) following clinical trials demonstrating improved lung function and fewer incidents of pulmonary exacerba-tions. While the precise mechanisms remain elusive, immunomodulatory actions are thought to be involved. We previously reported impaired phagocytosis and defective anti-inflammatory M2 macrophage polarization in CF. This study systematically analyzed the effect of AZM on the functions of unpolarized and M1/M2 polarized macrophages in CF. METHODS: Monocytes, isolated from the venous blood of patients with CF (pwCF) and healthy controls (HCs), were differentiated into monocyte-derived macrophages (MDMs) and subsequently infected with P. aeruginosa. P. aeruginosa uptake and killing by MDMs in the presence or absence of AZM was studied. M1 and M2 macrophage polarizations were induced and their functions and cytokine release were analyzed. RESULTS: Following AZM treatment, both HC and CF MDMs exhibited a significant increase in P. aeruginosa uptake and killing, however, lysosomal acidification remained unchanged. AZM treatment led to higher activation of ERK1/2 in both HC and CF MDMs. Pharmacological inhibition of ERK1/2 using U0126 significantly reduced P. aeruginosa uptake in HC MDMs. M1 macrophage polarization remained unaffected; however, AZM treatment led to increased IL-6 and IL-10 release in both HC and CF M1 macrophages. AZM also significantly increased the phagocytic index for both pHrodo E. coli and S. aureus in CF M1 macrophages. In CF, AZM treatment promoted anti-inflammatory M2 macrophage polarization, with an increased percentage of CD209+ M2 macrophages, induction of the M2 gene CCL18, along with its secretion in the culture supernatant. However, AZM d'd not restore endocytosis in CF, another essential feature of M2 macrophages. CONCLUSIONS: This study highlights the cellular functions and molecular targets of AZM which may involve an improved uptake of both Gram-positive and Gram-negative bacteria, restored anti-inflammatory macrophage polarization in CF. This may in turn shape the reduced lung inflammation observed in clinical trials. In addition, we confirmed the role of ERK1/2 activation for bacterial uptake.


Asunto(s)
Azitromicina , Fibrosis Quística , Humanos , Azitromicina/farmacología , Bacterias Gramnegativas , Antibacterianos/farmacología , Fibrosis Quística/tratamiento farmacológico , Escherichia coli , Staphylococcus aureus , Bacterias Grampositivas , Macrófagos , Antiinflamatorios/farmacología
3.
J Cell Biol ; 222(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37213075

RESUMEN

The exuberant phagocytosis of apoptotic cell corpses by macrophages in Drosophila embryos creates highly oxidative environments. Stow and Sweet discuss work from Clemente and Weavers (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202203062) showing for the first time how macrophage Nrf2 is primed to help sustain immune function and mitigate bystander oxidative damage.


Asunto(s)
Proteínas de Drosophila , Macrófagos , Factor 2 Relacionado con NF-E2 , Fagocitosis , Animales , Apoptosis , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
4.
Eur J Immunol ; 53(7): e2250056, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37058370

RESUMEN

TLRs engage numerous adaptor proteins and signaling molecules, enabling a complex series of post-translational modifications (PTMs) to mount inflammatory responses. TLRs themselves are post-translationally modified following ligand-induced activation, with this being required to relay the full spectrum of proinflammatory signaling responses. Here, we reveal indispensable roles for TLR4 Y672 and Y749 phosphorylation in mounting optimal LPS-inducible inflammatory responses in primary mouse macrophages. LPS promotes phosphorylation at both tyrosine residues, with Y749 phosphorylation being required for maintenance of total TLR4 protein levels and Y672 phosphorylation exerting its pro-inflammatory effects more selectively by initiating ERK1/2 and c-FOS phosphorylation. Our data also support a role for the TLR4-interacting membrane proteins SCIMP and the SYK kinase axis in mediating TLR4 Y672 phosphorylation to permit downstream inflammatory responses in murine macrophages. The corresponding residue in human TLR4 (Y674) is also required for optimal LPS signaling responses. Our study, thus, reveals how a single PTM on one of the most widely studied innate immune receptors orchestrates downstream inflammatory responses.


Asunto(s)
Citocinas , Lipopolisacáridos , Humanos , Animales , Ratones , Fosforilación , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4 , Tirosina/metabolismo , Tirosina/farmacología , Macrófagos
5.
Proc Natl Acad Sci U S A ; 120(4): e2212813120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649417

RESUMEN

The immune system must be able to respond to a myriad of different threats, each requiring a distinct type of response. Here, we demonstrate that the cytoplasmic lysine deacetylase HDAC7 in macrophages is a metabolic switch that triages danger signals to enable the most appropriate immune response. Lipopolysaccharide (LPS) and soluble signals indicating distal or far-away danger trigger HDAC7-dependent glycolysis and proinflammatory IL-1ß production. In contrast, HDAC7 initiates the pentose phosphate pathway (PPP) for NADPH and reactive oxygen species (ROS) production in response to the more proximal threat of nearby bacteria, as exemplified by studies on uropathogenic Escherichia coli (UPEC). HDAC7-mediated PPP engagement via 6-phosphogluconate dehydrogenase (6PGD) generates NADPH for antimicrobial ROS production, as well as D-ribulose-5-phosphate (RL5P) that both synergizes with ROS for UPEC killing and suppresses selective inflammatory responses. This dual functionality of the HDAC7-6PGD-RL5P axis prioritizes responses to proximal threats. Our findings thus reveal that the PPP metabolite RL5P has both antimicrobial and immunomodulatory activities and that engagement of enzymes in catabolic versus anabolic metabolic pathways triages responses to different types of danger for generation of inflammatory versus antimicrobial responses, respectively.


Asunto(s)
Antiinfecciosos , Triaje , Especies Reactivas de Oxígeno/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Antiinfecciosos/metabolismo , Vía de Pentosa Fosfato/fisiología
6.
Biochem Soc Trans ; 50(5): 1341-1352, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36281999

RESUMEN

Extracellular signal-related kinases 1 and 2 (ERK1/2) are the final components of the mitogen-activated protein kinase (MAPK) phosphorylation cascade, an integral module in a diverse array of signalling pathways for shaping cell behaviour and fate. More recently, studies have shown that ERK1/2 plays an essential role downstream of immune receptors to elicit inflammatory gene expression in response to infection and cell or tissue damage. Much of this work has studied ERK1/2 activation in Toll-like receptor (TLR) pathways, providing mechanistic insights into its recruitment, compartmentalisation and activation in cells of the innate immune system. In this review, we summarise the typical activation of ERK1/2 in growth factor receptor pathways before discussing its known roles in immune cell signalling with a focus downstream of TLRs. We examine emerging research uncovering evidence of dysfunctional ERK1/2 signalling in inflammatory diseases and discuss the potential therapeutic benefit of targeting ERK1/2 pathways in inflammation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Sistema de Señalización de MAP Quinasas , Humanos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transducción de Señal , Fosforilación , Inflamación
7.
J Biol Chem ; 298(5): 101857, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337798

RESUMEN

Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Membrana , Quinasa Syk , Receptor Toll-Like 4 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Macrófagos/enzimología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Quinasa Syk/metabolismo , Receptor Toll-Like 4/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Tirosina/metabolismo , Familia-src Quinasas/metabolismo
8.
Cell Rep ; 38(5): 110296, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108536

RESUMEN

Here, we present ultrastructural analyses showing that incoming HIV are captured near the lymphocyte surface in a virion-glycan-dependent manner. Biophysical analyses show that removal of either virion- or cell-associated N-glycans impairs virus-cell binding, and a similar glycan-dependent relationship is observed between purified HIV envelope (Env) and primary T cells. Trimming of N-glycans from either HIV or Env does not inhibit protein-protein interactions. Glycan arrays reveal HIV preferentially binds to N-acetylglucosamine and mannose. Interfering with these glycan-based interactions reduces HIV infectivity. These glycan interactions are distinct from previously reported glycan-lectin and non-specific electrostatic charge-based interactions. Specific glycan-glycan-mediated attachment occurs prior to virus entry and enhances efficiency of infection. Binding and fluorescent imaging data support glycan-glycan interactions as being responsible, at least in part, for initiating contact between HIV and the host cell, prior to viral Env-cellular CD4 engagement.


Asunto(s)
Anticuerpos Anti-VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Polisacáridos/metabolismo , Internalización del Virus/efectos de los fármacos , Anticuerpos Neutralizantes/metabolismo , Membrana Celular/metabolismo , Glicosilación/efectos de los fármacos , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/inmunología , Humanos , Virión/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química
9.
Immunol Cell Biol ; 100(4): 267-284, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35201640

RESUMEN

Toll-like receptor (TLR) signaling relies on Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor proteins that recruit downstream signaling molecules to generate tailored immune responses. In addition, the palmitoylated transmembrane adaptor protein family member Scimp acts as a non-TIR-containing adaptor protein in macrophages, scaffolding the Src family kinase Lyn to enable TLR phosphorylation and proinflammatory signaling responses. Here we report the existence of a smaller, naturally occurring translational variant of Scimp (Scimp TV1), which is generated through leaky scanning and translation at a downstream methionine. Scimp TV1 also scaffolds Lyn, but in contrast to full-length Scimp, it is basally rather than lipopolysaccharide (LPS)-inducibly phosphorylated. Macrophages from mice that selectively express Scimp TV1, but not full-length Scimp, have impaired sustained LPS-inducible cytokine responses. Furthermore, in granulocyte macrophage colony-stimulating factor-derived myeloid cells that express high levels of Scimp, selective overexpression of Scimp TV1 enhances CpG DNA-inducible cytokine production. Unlike full-length Scimp that localizes to the cell surface and filopodia, Scimp TV1 accumulates in intracellular compartments, particularly the Golgi. Moreover, this variant of Scimp is not inducibly phosphorylated in response to CpG DNA, suggesting that it may act via an indirect mechanism to enhance TLR9 responses. Our findings thus reveal the use of alternative translation start sites as a previously unrecognized mechanism for diversifying TLR responses in the innate immune system.


Asunto(s)
Transducción de Señal , Receptores Toll-Like , Animales , ADN/metabolismo , Macrófagos/metabolismo , Ratones , Receptores Toll-Like/metabolismo , Familia-src Quinasas/metabolismo
10.
PLoS Pathog ; 18(1): e1010166, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007292

RESUMEN

A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.


Asunto(s)
Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Macrófagos/microbiología , Vacuolas/microbiología , Virulencia/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Immunol Cell Biol ; 99(10): 1067-1076, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555867

RESUMEN

The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in the host control of mycobacterial infections. Expression and release of TNF are tightly regulated, yet the molecular mechanisms that control the release of TNF by mycobacteria-infected host cells, in particular macrophages, are incompletely understood. Rab GTPases direct the transport of intracellular membrane-enclosed vesicles and are important regulators of macrophage cytokine secretion. Rab6b is known to be predominantly expressed in the brain where it functions in retrograde transport and anterograde vesicle transport for exocytosis. Whether it executes similar functions in the context of immune responses is unknown. Here we show that Rab6b is expressed by primary mouse macrophages, where it localized to the Golgi complex. Infection with Mycobacterium bovis bacille Calmette-Guérin (BCG) resulted in dynamic changes in Rab6b expression in primary mouse macrophages in vitro as well as in organs from infected mice in vivo. We further show that Rab6b facilitated TNF release by M. bovis BCG-infected macrophages, in the absence of discernible impact on Tnf messenger RNA and intracellular TNF protein expression. Our observations identify Rab6b as a positive regulator of M. bovis BCG-induced TNF trafficking and secretion by macrophages and positions Rab6b among the molecular machinery that orchestrates inflammatory cytokine responses by macrophages.


Asunto(s)
Aparato de Golgi/inmunología , Macrófagos/inmunología , Infecciones por Mycobacterium , Factor de Necrosis Tumoral alfa/inmunología , Proteínas de Unión al GTP rab/inmunología , Animales , Ratones , Infecciones por Mycobacterium/inmunología , Mycobacterium bovis
12.
Cell Rep ; 36(10): 109662, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496234

RESUMEN

Immune cells are armed with Toll-like receptors (TLRs) for sensing and responding to pathogens and other danger cues. The role of extracellular-signal-regulated kinases 1/2 (Erk1/2) in TLR signaling remains enigmatic, with both pro- and anti-inflammatory functions described. We reveal here that the immune-specific transmembrane adaptor SCIMP is a direct scaffold for Erk1/2 in TLR pathways, with high-resolution, live-cell imaging revealing that SCIMP guides the spatial and temporal recruitment of Erk2 to membrane ruffles and macropinosomes for pro-inflammatory TLR4 signaling. SCIMP-deficient mice display defects in Erk1/2 recruitment to TLR4, c-Fos activation, and pro-inflammatory cytokine production, with these effects being phenocopied by Erk1/2 signaling inhibition. Our findings thus delineate a selective role for SCIMP as a key scaffold for the membrane recruitment of Erk1/2 kinase to initiate TLR-mediated pro-inflammatory responses in macrophages.


Asunto(s)
Macrófagos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo , Animales , Citocinas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Transgénicos , Fosforilación , Receptor Toll-Like 4/metabolismo
13.
Methods Mol Biol ; 2293: 45-56, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453709

RESUMEN

The family of Rab GTPases switch between GDP- and GTP-bound forms to interact with effectors and accessory proteins for the regulation of trafficking and signaling pathways in cells. The activation and recruitment of a specific Rab by stimulants or physiological changes can be detected and assessed by measuring the relative amount of the Rab in its active, "GTP-bound" state versus the inactive "GDP-bound" state. While GTP loading can be measured in vitro, current methods to detect the activation state of endogenous Rabs within a cellular context are limited. Here, we developed two molecular probes, based on domains of known Rab effectors, which can be used to pull down endogenous GTP-bound Rab8 from cell extracts as a measure of Rab8 activation. As a test system, we use the lipopolysaccharide (LPS) induced activation of Rab8 in mouse macrophages. The molecular probes compared for capture of GTP-bound Rab8 are derived from two Rab8 effectors, OCRL and PI3Kγ, with the former assessed as being more efficient. We describe how the OCRL-RBD probe is used to assess activation of Rab8 in cell extracts with a method that should be applicable to assessing GTP-bound Rab8 in other cell and tissue extracts.


Asunto(s)
Proteínas de Unión al GTP rab/metabolismo , Animales , Extractos Celulares , Activación Enzimática , Guanosina Trifosfato , Ratones , Sondas Moleculares , Proteínas de Unión al GTP rab/genética
14.
BMC Bioinformatics ; 22(1): 410, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412593

RESUMEN

BACKGROUND: With recent advances in microscopy, recordings of cell behaviour can result in terabyte-size datasets. The lattice light sheet microscope (LLSM) images cells at high speed and high 3D resolution, accumulating data at 100 frames/second over hours, presenting a major challenge for interrogating these datasets. The surfaces of vertebrate cells can rapidly deform to create projections that interact with the microenvironment. Such surface projections include spike-like filopodia and wave-like ruffles on the surface of macrophages as they engage in immune surveillance. LLSM imaging has provided new insights into the complex surface behaviours of immune cells, including revealing new types of ruffles. However, full use of these data requires systematic and quantitative analysis of thousands of projections over hundreds of time steps, and an effective system for analysis of individual structures at this scale requires efficient and robust methods with minimal user intervention. RESULTS: We present LLAMA, a platform to enable systematic analysis of terabyte-scale 4D microscopy datasets. We use a machine learning method for semantic segmentation, followed by a robust and configurable object separation and tracking algorithm, generating detailed object level statistics. Our system is designed to run on high-performance computing to achieve high throughput, with outputs suitable for visualisation and statistical analysis. Advanced visualisation is a key element of LLAMA: we provide a specialised tool which supports interactive quality control, optimisation, and output visualisation processes to complement the processing pipeline. LLAMA is demonstrated in an analysis of macrophage surface projections, in which it is used to i) discriminate ruffles induced by lipopolysaccharide (LPS) and macrophage colony stimulating factor (CSF-1) and ii) determine the autonomy of ruffle morphologies. CONCLUSIONS: LLAMA provides an effective open source tool for running a cell microscopy analysis pipeline based on semantic segmentation, object analysis and tracking. Detailed numerical and visual outputs enable effective statistical analysis, identifying distinct patterns of increased activity under the two interventions considered in our example analysis. Our system provides the capacity to screen large datasets for specific structural configurations. LLAMA identified distinct features of LPS and CSF-1 induced ruffles and it identified a continuity of behaviour between tent pole ruffling, wave-like ruffling and filopodia deployment.


Asunto(s)
Microscopía , Seudópodos , Algoritmos , Aprendizaje Automático , Macrófagos
15.
J Vis Exp ; (174)2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34424243

RESUMEN

Macropinocytosis is a highly conserved but still incompletely understood process that is essential for the uptake and ingestion of fluid, fluid-phase nutrients and other material in cells. The dramatic extension of cell surface ruffles, their closure to form macropinosomes, and the maturation of internalized macropinosomes are key events in this pathway that can be difficult to capture using conventional confocal imaging based on tracking a bolus of fluorescent cargo. Fluorescent dextrans are commonly used experimentally as fluid phase markers for macropinosomes and for other endocytic pathways. A method the lab has adopted to optimize the imaging of dextran uptake involves using live imaging of cells bathed in high concentrations of fluorescent dextran in the medium, with the unlabeled cells appearing in relief (as black). The cell ruffles are highlighted to visualize ruffle closure, and internalized macropinosomes appear as fluorescent vacuoles in the cell interior. This method is optimal for visualizing macropinosome features and allows for easy segmentation and quantification. This paper describes dual-labeling of pathways with different sized dextrans and the co-expression of lipid probes and fluorescent membrane proteins to demark macropinosomes and other endosomes. The detection of internalized dextran at an ultrastructural level using correlative light and electron microscopy (CLEM) is also demonstrated. These cell processes can be imaged using multiple live imaging modalities, including in 3D. Taken together, these approaches optimize macropinosome imaging for many different settings and experimental systems.


Asunto(s)
Endosomas , Pinocitosis , Membrana Celular , Microscopía Electrónica , Vacuolas
16.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34128957

RESUMEN

Actin organization underpins conserved functions at the leading edge of cells. In this issue, Yang et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202010096) characterize Leep1 as a bi-functional regulator of migration and macropinocytosis through PIP3 and the Scar/WAVE complex.


Asunto(s)
Actinas , Pinocitosis , Actinas/genética
17.
Small GTPases ; 12(1): 27-43, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-30843452

RESUMEN

Macrophages are important immune sentinels that detect and clear pathogens and initiate inflammatory responses through the activation of surface receptors, including Toll-like receptors (TLRs). Activated TLRs employ complex cellular trafficking and signalling pathways to initiate transcription for inflammatory cytokine programs. We have previously shown that Rab8a is activated by multiple TLRs and regulates downstream Akt/mTOR signalling by recruiting the effector PI3Kγ, but the guanine nucleotide exchange factors (GEF) canonically required for Rab8a activation in TLR pathways is not known. Using GST affinity pull-downs and mass spectrometry analysis, we identified a Rab8 specific GEF, GRAB, as a Rab8a binding partner in LPS-activated macrophages. Co-immunoprecipitation and fluorescence microscopy showed that both GRAB and a structurally similar GEF, Rabin8, undergo LPS-inducible binding to Rab8a and are localised on cell surface ruffles and macropinosomes where they coincide with sites of Rab8a mediated signalling. Rab nucleotide activation assays with CRISPR-Cas9 mediated knock-out (KO) cell lines of GRAB, Rabin8 and double KOs showed that both GEFs contribute to TLR4 induced Rab8a GTP loading, but not membrane recruitment. In addition, measurement of signalling profiles and live cell imaging with the double KOs revealed that either GEF is individually sufficient to mediate PI3Kγ-dependent Akt/mTOR signalling at macropinosomes during TLR4-driven inflammation, suggesting a redundant relationship between these proteins. Thus, both GRAB and Rabin8 are revealed as key positive regulators of Rab8a nucleotide exchange for TLR signalling and inflammatory programs. These GEFs may be useful as potential targets for manipulating inflammation. Abbreviations: TLR: Toll-like Receptor; OCRL: oculocerebrorenal syndrome of Lowe protein; PI3Kγ: phosphoinositol-3-kinase gamma; LPS: lipopolysaccharide; GEF: guanine nucleotide exchange factor; GST: glutathione S-transferases; BMMs: bone marrow derived macrophages; PH: pleckstrin homology; GAP: GTPase activating protein; ABCA1: ATP binding cassette subfamily A member 1; GDI: GDP dissociation inhibitor; LRP1: low density lipoprotein receptor-related protein 1.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido
18.
Am J Kidney Dis ; 77(3): 410-419, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33039432

RESUMEN

Primary cilia are specialized sensory organelles that protrude from the apical surface of most cell types. During the past 2 decades, they have been found to play important roles in tissue development and signal transduction, with mutations in ciliary-associated proteins resulting in a group of diseases collectively known as ciliopathies. Many of these mutations manifest as renal ciliopathies, characterized by kidney dysfunction resulting from aberrant cilia or ciliary functions. This group of overlapping and genetically heterogeneous diseases includes polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome as the main focus of this review. Renal ciliopathies are characterized by the presence of kidney cysts that develop due to uncontrolled epithelial cell proliferation, growth, and polarity, downstream of dysregulated ciliary-dependent signaling. Due to cystic-associated kidney injury and systemic inflammation, cases result in kidney failure requiring dialysis and transplantation. Of the handful of pharmacologic treatments available, none are curative. It is important to determine the molecular mechanisms that underlie the involvement of the primary cilium in cyst initiation, expansion, and progression for the development of novel and efficacious treatments. This review updates research progress in defining key genes and molecules central to ciliogenesis and renal ciliopathies.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Cilios/metabolismo , Ciliopatías/genética , Enfermedades Renales Poliquísticas/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/fisiopatología , Cerebelo/anomalías , Cerebelo/metabolismo , Cerebelo/fisiopatología , Chaperoninas/genética , Cilios/fisiología , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/fisiopatología , Ciliopatías/metabolismo , Ciliopatías/fisiopatología , Proteínas del Citoesqueleto/genética , Encefalocele/genética , Encefalocele/metabolismo , Encefalocele/fisiopatología , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/fisiopatología , Humanos , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/fisiopatología , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/fisiopatología , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/metabolismo , Atrofias Ópticas Hereditarias/fisiopatología , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/fisiopatología , Proteínas/genética , Retina/anomalías , Retina/metabolismo , Retina/fisiopatología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/fisiopatología , Canales Catiónicos TRPP/genética
19.
20.
Sci Adv ; 6(38)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938666

RESUMEN

Stinging trees from Australasia produce remarkably persistent and painful stings upon contact of their stiff epidermal hairs, called trichomes, with mammalian skin. Dendrocnide-induced acute pain typically lasts for several hours, and intermittent painful flares can persist for days and weeks. Pharmacological activity has been attributed to small-molecule neurotransmitters and inflammatory mediators, but these compounds alone cannot explain the observed sensory effects. We show here that the venoms of Australian Dendrocnide species contain heretofore unknown pain-inducing peptides that potently activate mouse sensory neurons and delay inactivation of voltage-gated sodium channels. These neurotoxins localize specifically to the stinging hairs and are miniproteins of 4 kDa, whose 3D structure is stabilized in an inhibitory cystine knot motif, a characteristic shared with neurotoxins found in spider and cone snail venoms. Our results provide an intriguing example of inter-kingdom convergent evolution of animal and plant venoms with shared modes of delivery, molecular structure, and pharmacology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...