Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 143(5): 569-583, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28555889

RESUMEN

Inherited deficiency in ether lipids, a subgroup of phospholipids whose biosynthesis needs peroxisomes, causes the fatal human disorder rhizomelic chondrodysplasia punctata. The exact roles of ether lipids in the mammalian organism and, therefore, the molecular mechanisms underlying the disease are still largely enigmatic. Here, we used glyceronephosphate O-acyltransferase knockout (Gnpat KO) mice to study the consequences of complete inactivation of ether lipid biosynthesis and documented substantial deficits in motor performance and muscle strength of these mice. We hypothesized that, probably in addition to previously described cerebellar abnormalities and myelination defects in the peripheral nervous system, an impairment of neuromuscular transmission contributes to the compromised motor abilities. Structurally, a morphologic examination of the neuromuscular junction (NMJ) in diaphragm muscle at different developmental stages revealed aberrant axonal branching and a strongly increased area of nerve innervation in Gnpat KO mice. Post-synaptically, acetylcholine receptor (AChR) clusters colocalized with nerve terminals within a widened endplate zone. In addition, we detected atypical AChR clustering, as indicated by decreased size and number of clusters following stimulation with agrin, in vitro. The turnover of AChRs was unaffected in ether lipid-deficient mice. Electrophysiological evaluation of the adult diaphragm indicated that although evoked potentials were unaltered in Gnpat KO mice, ether lipid deficiency leads to fewer spontaneous synaptic vesicle fusion events but, conversely, an increased post-synaptic response to spontaneous vesicle exocytosis. We conclude from our findings that ether lipids are essential for proper development and function of the NMJ and may, therefore, contribute to motor performance. Read the Editorial Highlight for this article on page 463.


Asunto(s)
Fuerza Muscular/fisiología , Debilidad Muscular/fisiopatología , Unión Neuromuscular/fisiopatología , Fosfolípidos/deficiencia , Animales , Diafragma/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados , Debilidad Muscular/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Transmisión Sináptica/fisiología
2.
J Muscle Res Cell Motil ; 36(6): 517-24, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26276166

RESUMEN

The turnover of nicotinic acetylcholine receptors (AChR) is a critical factor that determines function and safety of neuromuscular transmission at the nerve-muscle synapses, i.e. neuromuscular junctions (NMJs). Previously, three different populations of AChRs exhibiting distinct stereotypic and activity-dependent half-life values were observed in mouse muscles. To address AChR turnover in more detail, we here employed a recently developed longitudinal radioiodine assay that is based on repetitive measurements of radio emission from the same animals over long periods of time in combination with systematic variation of the time elapsed between AChR pulse-labeling and muscle denervation. Modeling of the data revealed profiles of AChR de novo synthesis and receptor incorporation into the postsynaptic membrane. Furthermore, decay of pre-existing AChRs upon denervation showed a peculiar pattern corroborating earlier findings of a two-step stabilization of AChRs.


Asunto(s)
Placa Motora/metabolismo , Receptores Colinérgicos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Radioisótopos de Yodo/metabolismo , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Desnervación Muscular/métodos , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Sinapsis/metabolismo
3.
Autophagy ; 10(1): 123-36, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24220501

RESUMEN

Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63(-/-) mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas de Choque Térmico/metabolismo , Proteínas Musculares/metabolismo , Receptores Nicotínicos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aminoácidos/deficiencia , Animales , Biomarcadores/metabolismo , Endocitosis , Endosomas/metabolismo , Ayuno , Técnica del Anticuerpo Fluorescente , Marcaje Isotópico , Lisosomas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Desnervación Muscular , Músculos/inervación , Músculos/metabolismo , Músculos/patología , Unión Neuromuscular/metabolismo , Fagosomas/metabolismo , Estabilidad Proteica , Proteína Sequestosoma-1 , Sinapsis/metabolismo , Proteínas de Motivos Tripartitos , Regulación hacia Arriba
4.
Age (Dordr) ; 35(5): 1663-74, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22956146

RESUMEN

Muscle atrophy is a process of muscle wasting induced under a series of catabolic stress conditions, such as denervation, disuse, cancer cachexia, heart and renal failure, AIDS, and aging. Neuromuscular junctions (NMJs), the synapses between motor neurons and muscle fibers undergo major changes in atrophying muscles, ranging from mild morphological alterations to complete disintegration. In this study, we hypothesized that remodeling of NMJs and muscle atrophy could be linked together. To test this, we examined if a major atrophy-promoting E3 ubiquitin ligase, MuRF1, is involved in the maintenance of NMJs. Immunofluorescence revealed that MuRF1 is highly enriched close to the NMJ. Affinity precipitation and in vivo imaging showed that MuRF1 interacts in endocytic structures with both, acetylcholine receptor, the primary postsynaptic protein of the NMJ, as well as with Bif-1, an autophagy- and endocytosis-regulating factor. In vivo imaging, radio labeling, and weighing approaches demonstrated that metabolic destabilization of acetylcholine receptors and muscle atrophy induced by denervation were significantly rescued in MuRF1-KO animals. Notably, interaction with Bif-1, and the rescue of AChR lifetime and muscle atrophy were specific to MuRF1 but not MuRF2. Our data demonstrate an involvement of MuRF1 in membrane protein-turnover, including the degradation of AChRs at the NMJ under atrophying conditions where MuRF1 also interacts and associates with Bif-1.


Asunto(s)
Lisosomas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Receptores Nicotínicos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Modelos Animales de Enfermedad , Endocitosis/fisiología , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Atrofia Muscular/patología , Unión Neuromuscular/metabolismo , Proteínas de Motivos Tripartitos
5.
PLoS One ; 7(7): e40860, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815846

RESUMEN

BACKGROUND: The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration. METHODOLOGY/PRINCIPAL FINDINGS: To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology. CONCLUSIONS/SIGNIFICANCE: Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle.


Asunto(s)
Proteína Quinasa Tipo I Dependiente de AMP Cíclico/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Unión Neuromuscular/enzimología , Unión Neuromuscular/fisiopatología , Regeneración , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Venenos Elapídicos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/patología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Estabilidad Proteica/efectos de los fármacos , Receptores Colinérgicos/metabolismo , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología
6.
J Cell Sci ; 125(Pt 3): 714-23, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22331361

RESUMEN

The stabilisation of acetylcholine receptors (AChRs) at the neuromuscular junction depends on muscle activity and the cooperative action of myosin Va and protein kinase A (PKA) type I. To execute its function, PKA has to be present in a subsynaptic microdomain where it is enriched by anchoring proteins. Here, we show that the AChR-associated protein, rapsyn, interacts with PKA type I in C2C12 and T-REx293 cells as well as in live mouse muscle beneath the neuromuscular junction. Molecular modelling, immunoprecipitation and bimolecular fluorescence complementation approaches identify an α-helical stretch of rapsyn to be crucial for binding to the dimerisation and docking domain of PKA type I. When expressed in live mouse muscle, a peptide encompassing the rapsyn α-helical sequence efficiently delocalises PKA type I from the neuromuscular junction. The same peptide, as well as a rapsyn construct lacking the α-helical domain, induces severe alteration of acetylcholine receptor turnover as well as fragmentation of synapses. This shows that rapsyn anchors PKA type I in close proximity to the postsynaptic membrane and suggests that this function is essential for synapse maintenance.


Asunto(s)
Proteína Quinasa Tipo I Dependiente de AMP Cíclico/metabolismo , Proteínas Musculares/metabolismo , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteína Quinasa Tipo I Dependiente de AMP Cíclico/química , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
7.
PLoS One ; 6(6): e20524, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21655100

RESUMEN

BACKGROUND: The turnover of acetylcholine receptors at the neuromuscular junction is regulated in an activity-dependent manner. Upon denervation and under various other pathological conditions, receptor half-life is decreased. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate a novel approach to follow the kinetics of acetylcholine receptor lifetimes upon pulse labeling of mouse muscles with ¹²5I-α-bungarotoxin in vivo. In contrast to previous assays where residual activity was measured ex vivo, in our setup the same animals are used throughout the whole measurement period, thereby permitting a dramatic reduction of animal numbers at increased data quality. We identified three stability levels of acetylcholine receptors depending on the presence or absence of innervation: one pool of receptors with a long half-life of ∼13 days, a second with an intermediate half-life of ∼8 days, and a third with a short half-life of ∼1 day. Data were highly reproducible from animal to animal and followed simple exponential terms. The principal outcomes of these measurements were reproduced by an optical pulse-labeling assay introduced recently. CONCLUSIONS/SIGNIFICANCE: A novel assay to determine kinetics of acetylcholine receptor turnover with small animal numbers is presented. Our data show that nerve activity acts on muscle acetylcholine receptor stability by at least two different means, one shifting receptor lifetime from short to intermediate and another, which further increases receptor stability to a long lifetime. We hypothesize on possible molecular mechanisms.


Asunto(s)
Radioisótopos de Yodo/farmacocinética , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Algoritmos , Animales , Bungarotoxinas/metabolismo , Femenino , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Semivida , Radioisótopos de Yodo/administración & dosificación , Cinética , Masculino , Ratones , Microscopía Electrónica de Transmisión , Modelos Biológicos , Desnervación Muscular , Músculo Esquelético/inervación , Músculo Esquelético/ultraestructura , Unión Neuromuscular/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo
8.
Chemosphere ; 67(9): S405-11, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17254629

RESUMEN

Poly-brominated flame retardants are ecotoxicologically relevant chemicals that can show high persistency in environmental samples and bioaccumulation in marine and fresh water animals. One of the most widely used compound is tetrabromobisphenol A (TBBPA). Until today, the toxicological data are rather fragmentary. Our studies on acute and sub-acute toxic effects with established cell lines demonstrate that TBBPA interferes with cellular signaling pathways. Cell viability is significantly reduced in a time- and concentration-dependent manner. The observed EC50 for rat kidney cells (NRK) was 52 microM (27 mg/l), 168 microM (90 mg/l) for A549 human lung cells, and 200 microM (108 mg/l) for Cal-62 human thyroid cells, respectively. The comparison of TBBPA with the non-brominated substance bisphenol A (BPA) clearly demonstrates that only the brominated compound exerts these effects on proliferation and cell viability. Cell cycle regulation was influenced considerably in Cal-62 cells, showing an explicit G2/M arrest in the cell cycle at TBBPA concentrations higher than 75 microM. Cellular signaling pathways directly connected to these affected parameters, e.g. the mitogen activated protein kinase (MAPK) cascades, are partly influenced in a cell specific and dose dependent manner. The extracellular-signal regulated kinase (ERK) is deactivated in NRK and A549 cells and activated in Cal-62 cells with increasing TBBPA concentrations.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Retardadores de Llama/toxicidad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Bifenilos Polibrominados/toxicidad , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...