Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 772: 145494, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33581537

RESUMEN

Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Reactores Biológicos , Cadena Alimentaria
2.
Front Plant Sci ; 10: 889, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354763

RESUMEN

The evidence for alternate stable states characterized by dominance of either floating or submerged plant dominance is well established. Inspired by an existing model and controlled experiments, we conceptually describe a dynamic that we have observed in the field using a simple model, the aim of which was to investigate key interactions of the shift between invasive floating and invasive submerged plant dominance, driven by the rapid decomposition of floating plants as a consequence of herbivory by biological control agents. This study showed that the rate of switch between floating and submerged invasive plant dominance, and the point in time at which the switch occurs, is dependent on the nutrient status of the water and the density of biological control agents on floating plant populations. Therefore, top-down invasive plant biological control efforts using natural enemies can affect systems on a wider scale than the intended agent - plant level, and can be significantly altered by bottom-up changes to the system, i.e., nutrient loading. The implications of this are essential for understanding the multiple roles invasive plants and their control have upon ecosystem dynamics. The results emphasize the importance of multi-trophic considerations for future invasive plant management and offer evidence for new pathways of invasion. The model outputs support the conclusion that, after the shift and in the absence of effective intervention, a submerged invasive stable state will persist.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA