Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 649, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802531

RESUMEN

Salivary complement inhibitors occur in many of the blood feeding arthropod species responsible for transmission of pathogens. During feeding, these inhibitors prevent the production of proinflammatory anaphylatoxins, which may interfere with feeding, and limit formation of the membrane attack complex which could damage arthropod gut tissues. Salivary inhibitors are, in many cases, novel proteins which may be pharmaceutically useful or display unusual mechanisms that could be exploited pharmaceutically. Albicin is a potent inhibitor of the alternative pathway of complement from the saliva of the malaria transmitting mosquito, Anopheles albimanus. Here we describe the cryo-EM structure of albicin bound to C3bBb, the alternative C3 convertase, a proteolytic complex that is responsible for cleavage of C3 and amplification of the complement response. Albicin is shown to induce dimerization of C3bBb, in a manner similar to the bacterial inhibitor SCIN, to form an inactive complex unable to bind the substrate C3. Size exclusion chromatography and structures determined after 30 minutes of incubation of C3b, factor B (FB), factor D (FD) and albicin indicate that FBb dissociates from the inhibited dimeric complex leaving a C3b-albicin dimeric complex which apparently decays more slowly.


Asunto(s)
Anopheles , Complemento C3b , Proteínas de Insectos , Proteínas y Péptidos Salivales , Microscopía por Crioelectrón , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Modelos Químicos , Animales , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Anopheles/química , Anopheles/clasificación , Secuencia de Aminoácidos , Humanos , Inactivadores del Complemento/química , Inactivadores del Complemento/metabolismo
2.
Cell Rep ; 43(4): 114074, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625794

RESUMEN

Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).


Asunto(s)
ARN Helicasas , Estabilidad del ARN , Transactivadores , Humanos , Regiones no Traducidas 3'/genética , Degradación de ARNm Mediada por Codón sin Sentido , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN Helicasas/metabolismo , ARN Helicasas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transactivadores/metabolismo , Transactivadores/genética , Células HEK293
3.
Blood ; 141(25): 3109-3121, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947859

RESUMEN

Inhibitors of complement and coagulation are present in the saliva of a variety of blood-feeding arthropods that transmit parasitic and viral pathogens. Here, we describe the structure and mechanism of action of the sand fly salivary protein lufaxin, which inhibits the formation of the central alternative C3 convertase (C3bBb) and inhibits coagulation factor Xa (fXa). Surface plasmon resonance experiments show that lufaxin stabilizes the binding of serine protease factor B (FB) to C3b but does not detectably bind either C3b or FB alone. The crystal structure of the inhibitor reveals a novel all ß-sheet fold containing 2 domains. A structure of the lufaxin-C3bB complex obtained via cryo-electron microscopy (EM) shows that lufaxin binds via its N-terminal domain at an interface containing elements of both C3b and FB. By occupying this spot, the inhibitor locks FB into a closed conformation in which proteolytic activation of FB by FD cannot occur. C3bB-bound lufaxin binds fXa at a separate site in its C-terminal domain. In the cryo-EM structure of a C3bB-lufaxin-fXa complex, the inhibitor binds to both targets simultaneously, and lufaxin inhibits fXa through substrate-like binding of a C-terminal peptide at the active site as well as other interactions in this region. Lufaxin inhibits complement activation in ex vivo models of atypical hemolytic uremic syndrome (aHUS) and paroxysmal nocturnal hemoglobinuria (PNH) as well as thrombin generation in plasma, providing a rationale for the development of a bispecific inhibitor to treat complement-related diseases in which thrombosis is a prominent manifestation.


Asunto(s)
Coagulación Sanguínea , Factor B del Complemento , Microscopía por Crioelectrón , Factor B del Complemento/química , Factor B del Complemento/metabolismo , Activación de Complemento , Serina Endopeptidasas , Complemento C3b/química
4.
Dev Cell ; 56(21): 2921-2923, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34752744

RESUMEN

A cell's identity is commonly regarded as its transcriptomic profile. In this issue of Developmental Cell, Fujii et al. (2021) show that a global translation factor subunit acts differentially on transcripts to modulate morphogen signaling levels, revealing a global mechanism of transcript-specific translational control in development.

5.
J Biol Chem ; 296: 100083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33199367

RESUMEN

Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a, which activate mast cells leading to plasma extravasation, pain, and itching. We have previously shown that albicin, a member of the SG7 protein family from An. Albimanus, blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin, but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement that is stabilized by an N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30 kDa family.


Asunto(s)
Inactivadores del Complemento/química , Inactivadores del Complemento/metabolismo , Properdina/metabolismo , Saliva/química , Animales , Anopheles , Convertasas de Complemento C3-C5/genética , Convertasas de Complemento C3-C5/metabolismo , Vía Alternativa del Complemento/genética , Vía Alternativa del Complemento/fisiología , Cristalografía por Rayos X , Culicidae , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Properdina/genética , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA