Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 334: 113465, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949571

RESUMEN

Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors increases phrenic motor output. Ampakines are a class of drugs that are positive allosteric modulators of AMPA receptors. We hypothesized that 1) ampakines can stimulate phrenic activity after incomplete cervical spinal cord injury (SCI), and 2) pairing ampakines with brief hypoxia could enable sustained facilitation of phrenic bursting. Phrenic activity was recorded ipsilateral (IL) and contralateral (CL) to C2 spinal cord hemisection (C2Hx) in anesthetized adult rats. Two weeks after C2Hx, ampakine CX717 (15 mg/kg, i.v.) increased IL (61 ± 46% baseline, BL) and CL burst amplitude (47 ± 26%BL) in 8 of 8 rats. After 90 min, IL and CL bursting remained above baseline (BL) in 7 of 8 rats. Pairing ampakine with a single bout of acute hypoxia (5-min, arterial partial pressure of O2 ~ 50 mmHg) had a variable impact on phrenic bursting, with some rats showing a large facilitation that exceeded the response of the ampakine alone group. At 8 weeks post-C2Hx, 7 of 8 rats increased IL (115 ± 117%BL) and CL burst amplitude (45 ± 27%BL) after ampakine. The IL burst amplitude remained above BL for 90-min in 7 of 8 rats; CL bursting remained elevated in 6 of 8 rats. The sustained impact of ampakine at 8 weeks was not enhanced by hypoxia exposure. Intravenous vehicle (10% 2-Hydroxypropyl-ß-cyclodextrin) did not increase phrenic bursting at either time point. We conclude that ampakines effectively stimulate neural drive to the diaphragm after cervical SCI. Pairing ampakines with a single hypoxic exposure did not consistently enhance phrenic motor facilitation.


Asunto(s)
Isoxazoles/uso terapéutico , Neuronas Motoras/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Vértebras Cervicales/lesiones , Diafragma/efectos de los fármacos , Diafragma/inervación , Diafragma/fisiología , Isoxazoles/farmacología , Masculino , Neuronas Motoras/fisiología , Técnicas de Cultivo de Órganos , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología
2.
J Neurophysiol ; 123(3): 993-1003, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31940229

RESUMEN

Phrenic long-term facilitation (LTF) is a sustained increase in phrenic motor output occurring after exposure to multiple (but not single) hypoxic episodes. Ampakines are a class of drugs that enhance AMPA receptor function. Ampakines can enhance expression of neuroplasticity, and the phrenic motor system is fundamentally dependent on excitatory glutamatergic currents. Accordingly, we tested the hypothesis that combining ampakine pretreatment with a single brief hypoxic exposure would result in phrenic motor facilitation lasting well beyond the period of hypoxia. Phrenic nerve output was recorded in urethane-anesthetized, ventilated, and vagotomized adult Sprague-Dawley rats. Ampakine CX717 (15 mg/kg iv; n = 8) produced a small increase in phrenic inspiratory burst amplitude and frequency, but values quickly returned to predrug baseline. When CX717 was followed 2 min later by a 5-min exposure to hypoxia (n = 8; PaO2 ~45 mmHg), a persistent increase in phrenic inspiratory burst amplitude (i.e., phrenic motor facilitation) was observed up to 60 min posthypoxia (103 ± 53% increase from baseline). In contrast, when hypoxia was preceded by vehicle injection (10% 2-hydroxypropyl-ß-cyclodextrin; n = 8), inspiratory phrenic bursting was similar to baseline values at 60 min. Additional experiments with another ampakine (CX1739, 15 mg/kg) produced comparable results. We conclude that pairing low-dose ampakine treatment with a single brief hypoxic exposure can evoke sustained phrenic motor facilitation. This targeted approach for enhancing respiratory neuroplasticity may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY A single brief episode of hypoxia (e.g., 3-5 min) does not evoke long-lasting increases in respiratory motor output after the hypoxia is concluded. Ampakines are a class of drugs that enhance AMPA receptor function. We show that pairing low-dose ampakine treatment with a single brief hypoxic exposure can evoke sustained phrenic motor facilitation after the acute hypoxic episode.


Asunto(s)
Hipoxia , Plasticidad Neuronal/fisiología , Nervio Frénico , Receptores AMPA/efectos de los fármacos , Respiración , Animales , Hipoxia/fisiopatología , Isoxazoles/farmacología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley , Respiración/efectos de los fármacos , Vagotomía
3.
Respir Physiol Neurobiol ; 271: 103305, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553921

RESUMEN

Spinal interneuron (IN) networks can facilitate respiratory motor recovery after spinal cord injury (SCI). We hypothesized that excitatory synaptic connectivity between INs located immediately caudal to unilateral cervical SCI would be most prevalent in a contra- to ipsilateral direction. Adult rats were studied following chronic C2 spinal cord hemisection (C2Hx) injury. Rats were anesthetized and ventilated and a multi-electrode array was used to simultaneously record INs on both sides of the C4-5 spinal cord. The temporal firing relationship between IN pairs was evaluated using cross-correlation with directionality of synaptic connections inferred based on electrode location. During baseline recordings, the majority of detectable excitatory IN connections occurred in a contra- to- ipsilateral direction. However, acute respiratory stimulation with hypoxia abolished this directionality, while simultaneously increasing the detectable inhibitory connections within the ipsilateral cord. We conclude that propriospinal networks caudal to SCI can display a contralateral-to-ipsilateral directionality of synaptic connections and that these connections are modulated by acute exposure to hypoxia.


Asunto(s)
Médula Cervical/lesiones , Médula Cervical/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Potenciales de Acción/fisiología , Animales , Femenino , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley
4.
J Neurophysiol ; 117(3): 1014-1029, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27974450

RESUMEN

Midcervical spinal interneurons form a complex and diffuse network and may be involved in modulating phrenic motor output. The intent of the current work was to enable a better understanding of midcervical "network-level" connectivity by pairing the neurophysiological multielectrode array (MEA) data with histological verification of the recording locations. We first developed a method to deliver 100-nA currents to electroplate silver onto and subsequently deposit silver from electrode tips after obtaining midcervical (C3-C5) recordings using an MEA in anesthetized and ventilated adult rats. Spinal tissue was then fixed, harvested, and histologically processed to "develop" the deposited silver. Histological studies verified that the silver deposition method discretely labeled (50-µm resolution) spinal recording locations between laminae IV and X in cervical segments C3-C5. Using correlative techniques, we next tested the hypothesis that midcervical neuronal discharge patterns are temporally linked. Cross-correlation histograms produced few positive peaks (5.3%) in the range of 0-0.4 ms, but 21.4% of neuronal pairs had correlogram peaks with a lag of ≥0.6 ms. These results are consistent with synchronous discharge involving mono- and polysynaptic connections among midcervical neurons. We conclude that there is a high degree of synaptic connectivity in the midcervical spinal cord and that the silver-labeling method can reliably mark metal electrode recording sites and "map" interneuron populations, thereby providing a low-cost and effective tool for use in MEA experiments. We suggest that this method will be useful for further exploration of midcervical network connectivity.NEW & NOTEWORTHY We describe a method that reliably identifies the locations of multielectrode array (MEA) recording sites while preserving the surrounding tissue for immunohistochemistry. To our knowledge, this is the first cost-effective method to identify the anatomic locations of neuronal ensembles recorded with a MEA during acute preparations without the requirement of specialized array electrodes. In addition, evaluation of activity recorded from silver-labeled sites revealed a previously unappreciated degree of connectivity between midcervical interneurons.


Asunto(s)
Médula Cervical/citología , Médula Cervical/fisiología , Electroporación/métodos , Interneuronas/citología , Interneuronas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Tinción con Nitrato de Plata/métodos , Potenciales de Acción , Animales , Microelectrodos , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Nervio Frénico/citología , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley
5.
J Neurophysiol ; 117(2): 767-776, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881723

RESUMEN

Intraspinal microstimulation (ISMS) using implanted electrodes can evoke locomotor movements after spinal cord injury (SCI) but has not been explored in the context of respiratory motor output. An advantage over epidural and direct muscle stimulation is the potential of ISMS to selectively stimulate components of the spinal respiratory network. The present study tested the hypothesis that medullary respiratory activity could be used to trigger midcervical ISMS and diaphragm motor unit activation in rats with cervical SCI. Studies were conducted after acute (hours) and subacute (5-21 days) C2 hemisection (C2Hx) injury in adult rats. Inspiratory bursting in the genioglossus (tongue) muscle was used to trigger a 250-ms train stimulus (100 Hz, 100-200 µA) to the ventral C4 spinal cord, targeting the phrenic motor nucleus. After both acute and subacute injury, genioglossus EMG activity effectively triggered ISMS and activated diaphragm motor units during the inspiratory phase. The ISMS paradigm also evoked short-term potentiation of spontaneous inspiratory activity in the previously paralyzed hemidiaphragm (i.e., bursting persisting beyond the stimulus period) in ∼70% of the C2Hx animals. We conclude that medullary inspiratory output can be used to trigger cervical ISMS and diaphragm activity after SCI. Further refinement of this method may enable "closed-loop-like" ISMS approaches to sustain ventilation after severe SCI.NEW & NOTEWORTHY We examined the feasibility of using intraspinal microstimulation (ISMS) of the cervical spinal cord to evoke diaphragm activity ipsilateral to acute and subacute hemisection of the upper cervical spinal cord of the rat. This proof-of-concept study demonstrated the efficacy of diaphragm activation, using an upper airway respiratory EMG signal to trigger ISMS at the level of the ipsilesional phrenic nucleus during acute and advanced postinjury intervals.


Asunto(s)
Diafragma/fisiopatología , Estimulación Eléctrica/métodos , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Médula Espinal/fisiología , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Biofisica , Médula Cervical , Modelos Animales de Enfermedad , Electromiografía , Femenino , Ratas , Ratas Sprague-Dawley
6.
Exp Neurol ; 287(Pt 2): 225-234, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27456270

RESUMEN

For most individuals, the respiratory control system produces a remarkably stable and coordinated motor output-recognizable as a breath-from birth until death. Very little is understood regarding the processes by which the respiratory control system maintains network stability in the presence of changing physiological demands and network properties that occur throughout life. An emerging principle of neuroscience is that neural activity is sensed and adjusted locally to assure that neurons continue to operate in an optimal range, yet to date, it is unknown whether such homeostatic plasticity is a feature of the neurons controlling breathing. Here, we review the evidence that local mechanisms sense and respond to perturbations in respiratory neural activity, with a focus on plasticity in respiratory motor neurons. We discuss whether these forms of plasticity represent homeostatic plasticity in respiratory control. We present new analyses demonstrating that reductions in synaptic inputs to phrenic motor neurons elicit a compensatory enhancement of phrenic inspiratory motor output, a form of plasticity termed inactivity-induced phrenic motor facilitation (iPMF), that is proportional to the magnitude of activity deprivation. Although the physiological role of iPMF is not understood, we hypothesize that it has an important role in protecting the drive to breathe during conditions of prolonged or intermittent reductions in respiratory neural activity, such as following spinal cord injury or during central sleep apnea.


Asunto(s)
Homeostasis/fisiología , Neuronas Motoras/fisiología , Plasticidad Neuronal/fisiología , Respiración , Sinapsis/fisiología , Animales , Humanos , Nervio Frénico/fisiología
7.
J Appl Physiol (1985) ; 117(7): 682-93, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25103979

RESUMEN

Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population.


Asunto(s)
Neuronas Motoras/fisiología , Plasticidad Neuronal/fisiología , Nervio Frénico/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Médula Espinal/fisiología , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Neuronas Motoras/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Valina/análogos & derivados , Valina/farmacología
8.
Exp Neurol ; 256: 46-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24681155

RESUMEN

Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life.


Asunto(s)
Diafragma/inervación , Neuronas Motoras/fisiología , Nervio Frénico/fisiología , Sinapsis/fisiología , Animales , Diafragma/patología , Masculino , Ratas , Ratas Sprague-Dawley , Respiración , Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...