Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
ACS Appl Electron Mater ; 5(4): 2414-2421, 2023 Apr 25.
Article En | MEDLINE | ID: mdl-37124236

Understanding the physical changes during electroformation and switching processes in transition-metal-oxide-based non-volatile memory devices is important for advancing this technology. Relatively few characteristics of these devices have been assessed in operando. In this work, we present scanning thermal microscopy measurements in vacuum on TaO x -based memory devices electroformed in both positive and negative polarities and high- and low-resistance states. The observed surface temperature footprints of the filament showed higher peak temperatures and narrower temperature distributions when the top electrode served as the anode in the electroformation process. This is consistent with a model in which a hot spot is created by a gap in the conducting filament that forms closest to the anode. A similar behavior was seen on comparing the high-resistance state to the low-resistance state, with the low-resistance footprint showing a lower peak and a larger width, consistent with the gap disappearing when the device is switched from high resistance to low resistance.

2.
Anal Chem ; 93(39): 13268-13273, 2021 Oct 05.
Article En | MEDLINE | ID: mdl-34546720

The polarization response of a coplanar electrochemical capacitor covered with an ionic liquid as the electrolyte has been examined using a combination of two powerful analytic techniques, X-ray photoelectron spectroscopy (XPS) and scanning electron microcopy (SEM). Spatiotemporal distribution of the ionic liquid surface potential, upon DC or AC (square wave) biasing, has been monitored via chemical element binding energy shifts using XPS and secondary electron intensity variations using SEM. SEM's high spatial resolution and speedy imaging together with application of a data mining algorithm made mapping of the surface potential distribution across the capacitor possible. Interestingly, despite the differences in the detection principles, both techniques yield similar polarization relaxation time constants. The results demonstrate the power of a synergistic combination of the two techniques with complementary capabilities and pave the way to a deeper understanding of liquid/solid interfaces and for performance evaluation and diagnostics of electrochemical devices.

3.
ACS Appl Mater Interfaces ; 12(50): 56650-56657, 2020 Dec 16.
Article En | MEDLINE | ID: mdl-33327058

Electrical double layers play a key role in a variety of electrochemical systems. The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them suitable for probing ultrathin electrical double layers at solid-liquid electrolyte interfaces. Employing graphene as an electron-transparent electrode in a two-electrode electrochemical system, we show that the secondary electron yield of the graphene-liquid interface depends on the ionic strength and concentration of the electrolyte and the applied bias at the remote counter electrode. These observations have been related to polarization-induced changes in the potential distribution within the electrical double layer and demonstrate the feasibility of using scanning electron microscopy to examine and map electrified liquid-solid interfaces.

4.
ACS Nano ; 14(10): 12982-12992, 2020 10 27.
Article En | MEDLINE | ID: mdl-32935540

Multiphoton polymer cross-linking evolves as the core process behind high-resolution additive microfabrication with soft materials for implantable/wearable electronics, tissue engineering, microrobotics, biosensing, drug delivery, etc. Electrons and soft X-rays, in principle, can offer even higher resolution and printing rates. However, these powerful lithographic tools are difficult to apply to vacuum incompatible liquid precursor solutions used in continuous additive fabrication. In this work, using biocompatible hydrogel as a model soft material, we demonstrate high-resolution in-liquid polymer cross-linking using scanning electron and X-ray microscopes. The approach augments the existing solid-state electron/X-ray lithography and beam-induced deposition techniques with a wider class of possible chemical reactions, precursors, and functionalities. We discuss the focused beam cross-linking mechanism, the factors affecting the ultimate feature size, and layer-by-layer printing possibilities. The potential of this technology is demonstrated on a few practically important applications such as in-liquid encapsulation of nanoparticles for plasmonic sensing and interfacing of viable cells with hydrogel electrodes.

5.
Nat Biotechnol ; 38(11): 1317-1327, 2020 11.
Article En | MEDLINE | ID: mdl-32541958

Current methods can illuminate the genome-wide activity of CRISPR-Cas9 nucleases, but are not easily scalable to the throughput needed to fully understand the principles that govern Cas9 specificity. Here we describe 'circularization for high-throughput analysis of nuclease genome-wide effects by sequencing' (CHANGE-seq), a scalable, automatable tagmentation-based method for measuring the genome-wide activity of Cas9 in vitro. We applied CHANGE-seq to 110 single guide RNA targets across 13 therapeutically relevant loci in human primary T cells and identified 201,934 off-target sites, enabling the training of a machine learning model to predict off-target activity. Comparing matched genome-wide off-target, chromatin modification and accessibility, and transcriptional data, we found that cellular off-target activity was two to four times more likely to occur near active promoters, enhancers and transcribed regions. Finally, CHANGE-seq analysis of six targets across eight individual genomes revealed that human single-nucleotide variation had significant effects on activity at ~15.2% of off-target sites analyzed. CHANGE-seq is a simplified, sensitive and scalable approach to understanding the specificity of genome editors.


CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Epigenesis, Genetic , High-Throughput Nucleotide Sequencing , Base Sequence , Cell Line , Chromatin/genetics , Gene Editing , Genetic Variation , Genome, Human , Humans , Machine Learning
6.
Nano Lett ; 20(2): 1336-1344, 2020 02 12.
Article En | MEDLINE | ID: mdl-31990570

The electrical double layer (EDL) governs the operation of multiple electrochemical devices, determines reaction potentials, and conditions ion transport through cellular membranes in living organisms. The few existing methods of EDL probing have low spatial resolution, usually only providing spatially averaged information. On the other hand, traditional Kelvin probe force microscopy (KPFM) is capable of mapping potential with nanoscale lateral resolution but cannot be used in electrolytes with concentrations higher than several mmol/L. Here, we resolve this experimental impediment by combining KPFM with graphene-capped electrolytic cells to quantitatively measure the potential drop across the EDL in aqueous electrolytes of decimolar and molar concentrations with a high lateral resolution. The surface potential of graphene in contact with deionized water and 0.1 mol/L solutions of CuSO4 and MgSO4 as a function of counter electrode voltage is reported. The measurements are supported by numerical modeling to reveal the role of the graphene membrane in potential screening and to determine the EDL potential drop. The proposed approach proves to be especially useful for imaging spatially inhomogeneous systems, such as nanoparticles submerged in an electrolyte solution. It could be suitable for in operando and in vivo measurements of the potential drop in the EDL on the surfaces of nanocatalysts and biological cells in equilibrium with liquid solutions.

7.
ACS Nano ; 13(9): 9735-9780, 2019 Sep 24.
Article En | MEDLINE | ID: mdl-31433942

Electrochemical reactions and ionic transport underpin the operation of a broad range of devices and applications, from energy storage and conversion to information technologies, as well as biochemical processes, artificial muscles, and soft actuators. Understanding the mechanisms governing function of these applications requires probing local electrochemical phenomena on the relevant time and length scales. Here, we discuss the challenges and opportunities for extending electrochemical characterization probes to the nanometer and ultimately atomic scales, including challenges in down-scaling classical methods, the emergence of novel probes enabled by nanotechnology and based on emergent physics and chemistry of nanoscale systems, and the integration of local data into macroscopic models. Scanning probe microscopy (SPM) methods based on strain detection, potential detection, and hysteretic current measurements are discussed. We further compare SPM to electron beam probes and discuss the applicability of electron beam methods to probe local electrochemical behavior on the mesoscopic and atomic levels. Similar to a SPM tip, the electron beam can be used both for observing behavior and as an active electrode to induce reactions. We briefly discuss new challenges and opportunities for conducting fundamental scientific studies, matter patterning, and atomic manipulation arising in this context.

8.
ACS Nano ; 13(7): 8012-8022, 2019 Jul 23.
Article En | MEDLINE | ID: mdl-31283179

Electrochemical processes that govern the performance of lithium ion batteries involve numerous parallel reactions and interfacial phenomena that complicate the microscopic understanding of these systems. To study the behavior of ion transport and reaction in these applications, we report the use of a focused ion beam of Li+ to locally insert controlled quantities of lithium with high spatial resolution into electrochemically relevant materials in vacuo. To benchmark the technique, we present results on direct-write lithiation of 35 nm thick crystalline silicon membranes using a 2 keV beam of Li+ at doses up to 1018 cm-2 (104 nm-2). We confirm quantitative sub-µm control of lithium insertion and characterize the concomitant morphological, structural, and functional changes of the system using a combination of electron and scanning probe microscopy. We observe saturation of interstitial lithium in the silicon membrane at ≈10% dopant number density and spillover of excess lithium onto the membrane's surface. The implanted Li+ is demonstrated to remain electrochemically active. This technique will enable controlled studies and improve understanding of Li+ ion interaction with local defect structures and interfaces in electrode and solid-electrolyte materials.

9.
Sci Rep ; 8(1): 17381, 2018 Nov 26.
Article En | MEDLINE | ID: mdl-30478356

Multiferroic materials have attracted considerable attention as possible candidates for a wide variety of future microelectronic and memory devices, although robust magnetoelectric (ME) coupling between electric and magnetic orders at room temperature still remains difficult to achieve. In order to obtain robust ME coupling at room temperature, we studied the Pb(Fe0.5Nb0.5)O3/Ni0.65Zn0.35Fe2O4/Pb(Fe0.5Nb0.5)O3 (PFN/NZFO/PFN) trilayer structure as a representative FE/FM/FE system. We report the ferroelectric, magnetic and ME properties of PFN/NZFO/PFN trilayer nanoscale heterostructure having dimensions 70/20/70 nm, at room temperature. The presence of only (00l) reflection of PFN and NZFO in the X-ray diffraction (XRD) patterns and electron diffraction patterns in Transmission Electron Microscopy (TEM) confirm the epitaxial growth of multilayer heterostructure. The distribution of the ferroelectric loop area in a wide area has been studied, suggesting that spatial variability of ferroelectric switching behavior is low, and film growth is of high quality. The ferroelectric and magnetic phase transitions of these heterostructures have been found at ~575 K and ~650 K, respectively which are well above room temperature. These nanostructures exhibit low loss tangent, large saturation polarization (Ps ~ 38 µC/cm2) and magnetization (Ms ~ 48 emu/cm3) with strong ME coupling at room temperature revealing them as potential candidates for nanoscale multifunctional and spintronics device applications.

10.
Nat Commun ; 9(1): 413, 2018 01 24.
Article En | MEDLINE | ID: mdl-29367670

The original version of this Article contained an error in Eq. 1. The arrows between the symbols "T" and "B", and "B" and "T", were written "↔" but should have been "→", and incorrectly read: IEBIC=IEBAC+ISEE+I(e↔h)+IEBICT↔B+IESEEB↔T The correct from of the Eq. 1 is as follows:IEBIC=IEBAC+ISEE+I(e↔h)+IEBICT→B+IESEEB→T This has now been corrected in both the PDF and HTML versions of the article.

11.
J Am Ceram Soc ; 101(1)2018 Jan.
Article En | MEDLINE | ID: mdl-38505649

The proton conductivity in functional oxides is crucial in determining electrochemistry and transport phenomena in a number of applications such as catalytic devices and fuel cells. However, single characterization techniques are usually limited in detecting the ionic dynamics at the full range of environmental conditions. In this report, we probe and uncover the links between the microstructure of nanostructured ceria (NC) and parameters that govern its electrochemical reaction and proton transport, by coupling experimental data obtained with time-resolved Kelvin probe force microscopy (tr-KPFM), electrochemical impedance spectroscopy (EIS), and finite element analysis. It is found that surface morphology determines the water splitting rate and proton conductivity at 25 °C and wet conditions, where protons are mainly generated and transported within surface physisorbed water layers. However, at higher temperature (i.e., ≥125 °C) and dry conditions, when physisorbed water evaporates, grain size and crystallographic orientation become significant factors. Specifically, the proton generation rate is negatively correlated with the grain size, whereas proton diffusivity is facilitated by surface {111} planes and additional conduction pathways offered by cracks and open pores connected to the surface.

12.
Nat Commun ; 8(1): 1972, 2017 12 07.
Article En | MEDLINE | ID: mdl-29215006

Metal oxide resistive switches are increasingly important as possible artificial synapses in next-generation neuromorphic networks. Nevertheless, there is still no codified set of tools for studying properties of the devices. To this end, we demonstrate electron beam-induced current measurements as a powerful method to monitor the development of local resistive switching in TiO2-based devices. By comparing beam energy-dependent electron beam-induced currents with Monte Carlo simulations of the energy absorption in different device layers, it is possible to deconstruct the origins of filament image formation and relate this to both morphological changes and the state of the switch. By clarifying the contrast mechanisms in electron beam-induced current microscopy, it is possible to gain new insights into the scaling of the resistive switching phenomenon and observe the formation of a current leakage region around the switching filament. Additionally, analysis of symmetric device structures reveals propagating polarization domains.

13.
J Am Chem Soc ; 139(50): 18138-18141, 2017 12 20.
Article En | MEDLINE | ID: mdl-29148738

Studies of the electrified solid-liquid interfaces are crucial for understanding biological and electrochemical systems. Until recently, use of photoemission electron microscopy (PEEM) for such purposes has been hampered by incompatibility of the liquid samples with ultrahigh vacuum environment of the electron optics and detector. Here we demonstrate that the use of ultrathin electron transparent graphene membranes, which can sustain large pressure differentials and act as a working electrode, makes it possible to probe electrochemical reactions in operando in liquid environments with PEEM.

14.
Sci Adv ; 3(4): e1602165, 2017 Apr.
Article En | MEDLINE | ID: mdl-28439542

Ferroelectricity has been proposed as a plausible mechanism to explain the high photovoltaic conversion efficiency in organic-inorganic perovskites; however, convincing experimental evidence in support of this hypothesis is still missing. Identifying and distinguishing ferroelectricity from other properties, such as piezoelectricity, ferroelasticity, etc., is typically nontrivial because these phenomena can coexist in many materials. In this work, a combination of microscopic and nanoscale techniques provides solid evidence for the existence of ferroelastic domains in both CH3NH3PbI3 polycrystalline films and single crystals in the pristine state and under applied stress. Experiments show that the configuration of CH3NH3PbI3 ferroelastic domains in single crystals and polycrystalline films can be controlled with applied stress, suggesting that strain engineering may be used to tune the properties of this material. No evidence of concomitant ferroelectricity was observed. Because grain boundaries have an impact on the long-term stability of organic-inorganic perovskite devices, and because the ferroelastic domain boundaries may differ from regular grain boundaries, the discovery of ferroelasticity provides a new variable to consider in the quest for improving their stability and enabling their widespread adoption.

15.
ACS Appl Mater Interfaces ; 9(31): 26492-26502, 2017 Aug 09.
Article En | MEDLINE | ID: mdl-28447785

Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studying a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.

16.
Nano Lett ; 17(2): 1034-1041, 2017 02 08.
Article En | MEDLINE | ID: mdl-28121153

Photoelectron emission microscopy (PEEM) is a powerful tool to spectroscopically image dynamic surface processes at the nanoscale, but it is traditionally limited to ultrahigh or moderate vacuum conditions. Here, we develop a novel graphene-capped multichannel array sample platform that extends the capabilities of photoelectron spectromicroscopy to routine liquid and atmospheric pressure studies with standard PEEM setups. Using this platform, we show that graphene has only a minor influence on the electronic structure of water in the first few layers and thus will allow for the examination of minimally perturbed aqueous-phase interfacial dynamics. Analogous to microarray screening technology in biomedical research, our platform is highly suitable for applications in tandem with large-scale data mining, pattern recognition, and combinatorial methods for spectro-temporal and spatiotemporal analyses at solid-liquid interfaces. Applying Bayesian linear unmixing algorithm to X-ray induced water radiolysis process, we were able to discriminate between different radiolysis scenarios and observe a metastable "wetting" intermediate water layer during the late stages of bubble formation.

17.
ACS Nano ; 10(10): 9068-9086, 2016 Oct 25.
Article En | MEDLINE | ID: mdl-27676453

Scanning probe microscopy (SPM) techniques have opened the door to nanoscience and nanotechnology by enabling imaging and manipulation of the structure and functionality of matter at nanometer and atomic scales. Here, we analyze the scientific discovery process in SPM by following the information flow from the tip-surface junction, to knowledge adoption by the wider scientific community. We further discuss the challenges and opportunities offered by merging SPM with advanced data mining, visual analytics, and knowledge discovery technologies.

18.
Sci Rep ; 6: 29216, 2016 07 07.
Article En | MEDLINE | ID: mdl-27384473

We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer from information misinterpretation due to low resolving power.

19.
ACS Appl Mater Interfaces ; 8(23): 14613-21, 2016 Jun 15.
Article En | MEDLINE | ID: mdl-27192540

Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications.

20.
Nanoscale ; 8(29): 13838-58, 2016 Aug 07.
Article En | MEDLINE | ID: mdl-27146961

Energy technologies of the 21(st) century require an understanding and precise control over ion transport and electrochemistry at all length scales - from single atoms to macroscopic devices. This short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. The discussion presents the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

...