Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
ACS Chem Biol ; 15(8): 2137-2153, 2020 08 21.
Article En | MEDLINE | ID: mdl-32786289

Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.


Saccharomyces cerevisiae/drug effects , alpha-Synuclein/toxicity , Amino Acid Sequence , Humans , Mutation , Parkinson Disease/metabolism , Protein Conformation , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
2.
J Biol Chem ; 293(3): 1054-1069, 2018 01 19.
Article En | MEDLINE | ID: mdl-29175904

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.


Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Cell Cycle Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , DNA Repair/genetics , DNA Repair/physiology , DNA Replication/physiology , Fluorescence Polarization , Genomic Instability/genetics , Genomic Instability/physiology , Microscopy, Atomic Force , Microscopy, Fluorescence , Protein Binding/genetics , Protein Binding/physiology , Cohesins
...