Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1251132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829347

RESUMEN

Purpose: A three-dimensional deep generative adversarial network (GAN) was used to predict dose distributions for locally advanced head and neck cancer radiotherapy. Given the labor- and time-intensive nature of manual planning target volume (PTV) and organ-at-risk (OAR) segmentation, we investigated whether dose distributions could be predicted without the need for fully segmented datasets. Materials and methods: GANs were trained/validated/tested using 320/30/35 previously segmented CT datasets and treatment plans. The following input combinations were used to train and test the models: CT-scan only (C); CT+PTVboost/elective (CP); CT+PTVs+OARs+body structure (CPOB); PTVs+OARs+body structure (POB); PTVs+body structure (PB). Mean absolute errors (MAEs) for the predicted dose distribution and mean doses to individual OARs (individual salivary glands, individual swallowing structures) were analyzed. Results: For the five models listed, MAEs were 7.3 Gy, 3.5 Gy, 3.4 Gy, 3.4 Gy, and 3.5 Gy, respectively, without significant differences among CP-CPOB, CP-POB, CP-PB, among CPOB-POB. Dose volume histograms showed that all four models that included PTV contours predicted dose distributions that had a high level of agreement with clinical treatment plans. The best model CPOB and the worst model PB (except model C) predicted mean dose to within ±3 Gy of the clinical dose, for 82.6%/88.6%/82.9% and 71.4%/67.1%/72.2% of all OARs, parotid glands (PG), and submandibular glands (SMG), respectively. The R2 values (0.17/0.96/0.97/0.95/0.95) of OAR mean doses for each model also indicated that except for model C, the predictions correlated highly with the clinical dose distributions. Interestingly model C could reasonably predict the dose in eight patients, but on average, it performed inadequately. Conclusion: We demonstrated the influence of the CT scan, and PTV and OAR contours on dose prediction. Model CP was not statistically different from model CPOB and represents the minimum data statistically required to adequately predict the clinical dose distribution in a group of patients.

2.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36428593

RESUMEN

Depending on the clinical situation, different combinations of lymph node (LN) levels define the elective LN target volume in head-and-neck cancer (HNC) radiotherapy. The accurate auto-contouring of individual LN levels could reduce the burden and variability of manual segmentation and be used regardless of the primary tumor location. We evaluated three deep learning approaches for the segmenting individual LN levels I−V, which were manually contoured on CT scans from 70 HNC patients. The networks were trained and evaluated using five-fold cross-validation and ensemble learning for 60 patients with (1) 3D patch-based UNets, (2) multi-view (MV) voxel classification networks and (3) sequential UNet+MV. The performances were evaluated using Dice similarity coefficients (DSC) for automated and manual segmentations for individual levels, and the planning target volumes were extrapolated from the combined levels I−V and II−IV, both for the cross-validation and for an independent test set of 10 patients. The median DSC were 0.80, 0.66 and 0.82 for UNet, MV and UNet+MV, respectively. Overall, UNet+MV significantly (p < 0.0001) outperformed other arrangements and yielded DSC = 0.87, 0.85, 0.86, 0.82, 0.77, 0.77 for the combined and individual level I−V structures, respectively. Both PTVs were also significantly (p < 0.0001) more accurate with UNet+MV, with DSC = 0.91 and 0.90, respectively. The accurate segmentation of individual LN levels I−V can be achieved using an ensemble of UNets. UNet+MV can further refine this result.

3.
Sci Rep ; 11(1): 14590, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272413

RESUMEN

In retinoblastoma, accurate segmentation of ocular structure and tumor tissue is important when working towards personalized treatment. This retrospective study serves to evaluate the performance of multi-view convolutional neural networks (MV-CNNs) for automated eye and tumor segmentation on MRI in retinoblastoma patients. Forty retinoblastoma and 20 healthy-eyes from 30 patients were included in a train/test (N = 29 retinoblastoma-, 17 healthy-eyes) and independent validation (N = 11 retinoblastoma-, 3 healthy-eyes) set. Imaging was done using 3.0 T Fast Imaging Employing Steady-state Acquisition (FIESTA), T2-weighted and contrast-enhanced T1-weighted sequences. Sclera, vitreous humour, lens, retinal detachment and tumor were manually delineated on FIESTA images to serve as a reference standard. Volumetric and spatial performance were assessed by calculating intra-class correlation (ICC) and dice similarity coefficient (DSC). Additionally, the effects of multi-scale, sequences and data augmentation were explored. Optimal performance was obtained by using a three-level pyramid MV-CNN with FIESTA, T2 and T1c sequences and data augmentation. Eye and tumor volumetric ICC were 0.997 and 0.996, respectively. Median [Interquartile range] DSC for eye, sclera, vitreous, lens, retinal detachment and tumor were 0.965 [0.950-0.975], 0.847 [0.782-0.893], 0.975 [0.930-0.986], 0.909 [0.847-0.951], 0.828 [0.458-0.962] and 0.914 [0.852-0.958], respectively. MV-CNN can be used to obtain accurate ocular structure and tumor segmentations in retinoblastoma.


Asunto(s)
Ojo/anatomía & histología , Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Desprendimiento de Retina/diagnóstico por imagen , Enfermedades de la Retina/diagnóstico por imagen , Neoplasias de la Retina/diagnóstico por imagen , Retinoblastoma/diagnóstico por imagen , Automatización/métodos , Niño , Preescolar , Aprendizaje Profundo , Femenino , Humanos , Lactante , Recién Nacido , Cristalino/anatomía & histología , Imagen por Resonancia Magnética , Masculino , Redes Neurales de la Computación , Estudios Retrospectivos , Esclerótica/anatomía & histología , Cuerpo Vítreo/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...