Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 631(8019): 199-206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898276

RESUMEN

The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms1 to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities2. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and ß stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Glicósido Hidrolasas , Polisacáridos , Humanos , Acarbosa/química , Acarbosa/metabolismo , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biocatálisis , Glucosinolatos/metabolismo , Glucosinolatos/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Hidrólisis , Metagenoma , Oxidación-Reducción , Plantas/química , Polisacáridos/metabolismo , Polisacáridos/química , Agua de Mar/microbiología , Microbiología del Suelo , Especificidad por Sustrato , Masculino
2.
J Biol Chem ; 300(6): 107367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750796

RESUMEN

The main protease (Mpro) remains an essential therapeutic target for COVID-19 post infection intervention given its critical role in processing the majority of viral proteins encoded by the genome of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2). Upon viral entry, the +ssRNA genome is translated into two long polyproteins (pp1a or the frameshift-dependent pp1ab) containing all the nonstructural proteins (nsps) required by the virus for immune modulation, replication, and ultimately, virion assembly. Included among these nsps is the cysteine protease Mpro (nsp5) which self-excises from the polyprotein, dimerizes, then sequentially cleaves 11 of the 15 cut-site junctions found between each nsp within the polyprotein. Many structures of Mpro (often bound to various small molecule inhibitors or peptides) have been detailed recently, including structures of Mpro bound to each of the polyprotein cleavage sequences, showing that Mpro can accommodate a wide range of targets within its active site. However, to date, kinetic characterization of the interaction of Mpro with each of its native cleavage sequences remains incomplete. Here, we present a robust and cost-effective FRET based system that benefits from a more consistent presentation of the substrate that is also closer in organization to the native polyprotein environment compared to previously reported FRET systems that use chemically modified peptides. Using this system, we were able to show that while each site maintains a similar Michaelis constant, the catalytic efficiency of Mpro varies greatly between cut-site sequences, suggesting a clear preference for the order of nsp processing.


Asunto(s)
Proteasas 3C de Coronavirus , Transferencia Resonante de Energía de Fluorescencia , Poliproteínas , SARS-CoV-2 , Humanos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , COVID-19/virología , COVID-19/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Poliproteínas/metabolismo , Poliproteínas/química , Proteolisis , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
3.
J Struct Biol ; 216(2): 108086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527711

RESUMEN

Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used ß-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of ß-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of ß-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing ß-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.


Asunto(s)
Proteínas de Unión a las Penicilinas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Cristalografía por Rayos X , Cinética , Antibacterianos/farmacología , Antibacterianos/química , beta-Lactamas/farmacología , beta-Lactamas/metabolismo , beta-Lactamas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Dominio Catalítico , Conformación Proteica , Modelos Moleculares
4.
Sci Adv ; 10(9): eadj3864, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416829

RESUMEN

Wall teichoic acid (WTA), a covalent adduct of Gram-positive bacterial cell wall peptidoglycan, contributes directly to virulence and antibiotic resistance in pathogenic species. Polymerization of the Staphylococcus aureus WTA ribitol-phosphate chain is catalyzed by TarL, a member of the largely uncharacterized TagF-like family of membrane-associated enzymes. We report the cryo-electron microscopy structure of TarL, showing a tetramer that forms an extensive membrane-binding platform of monotopic helices. TarL is composed of an amino-terminal immunoglobulin-like domain and a carboxyl-terminal glycosyltransferase-B domain for ribitol-phosphate polymerization. The active site of the latter is complexed to donor substrate cytidine diphosphate-ribitol, providing mechanistic insights into the catalyzed phosphotransfer reaction. Furthermore, the active site is surrounded by electropositive residues that serve to retain the lipid-linked acceptor for polymerization. Our data advance general insight into the architecture and membrane association of the still poorly characterized monotopic membrane protein class and present molecular details of ribitol-phosphate polymerization that may aid in the design of new antimicrobials.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Microscopía por Crioelectrón , Staphylococcus aureus Resistente a Meticilina/metabolismo , Virulencia , Ribitol/metabolismo , Ácidos Teicoicos/análisis , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Fosfatos/metabolismo , Farmacorresistencia Microbiana
5.
Annu Rev Microbiol ; 77: 669-698, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713458

RESUMEN

Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.


Asunto(s)
Flagelos , Sistemas de Secreción Tipo III , Microscopía por Crioelectrón , Transporte Biológico , Eucariontes
6.
Emerg Microbes Infect ; 12(2): 2246594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37555275

RESUMEN

Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (C2-C5a). Our lead direct-acting antiviral (DAA), C5a, is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro. The compounds C2-C5a exhibit broad-spectrum activity against Omicron subvariants (BA.5, BQ.1.1, and XBB.1.5) and seasonal human coronavirus-229E infection in human cells. Notably, C5a has median effective concentrations of 30-50 nM against BQ.1.1 and XBB.1.5 in two different human cell lines. X-ray crystallography has confirmed the unique binding modes of C2-C5a to the 3CLpro, which can limit virus cross-resistance to emerging Paxlovid-resistant variants. We tested the effect of C5a with two of our newly discovered host-directed antivirals (HDAs): N-0385, a TMPRSS2 inhibitor, and bafilomycin D (BafD), a human vacuolar H+-ATPase [V-ATPase] inhibitor. We demonstrated a synergistic action of C5a in combination with N-0385 and BafD against Omicron BA.5 infection in human Calu-3 lung cells. Our findings underscore that a SARS-CoV-2 multi-targeted treatment for circulating Omicron subvariants based on DAAs (C5a) and HDAs (N-0385 or BafD) can lead to therapeutic benefits by enhancing treatment efficacy. Furthermore, the high-resolution structures of SARS-CoV-2 3CLpro in complex with C2-C5a will facilitate future rational optimization of our novel broad-spectrum active-site-directed 3C-like protease inhibitors.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , SARS-CoV-2
7.
J Immunol ; 211(6): 981-993, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37493438

RESUMEN

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (d-(+)-trehalose 6,6'-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , SARS-CoV-2 , Vacunas contra la COVID-19 , Hidróxido de Aluminio , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Mamíferos
8.
J Med Chem ; 66(11): 7553-7569, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37235809

RESUMEN

We tested a series of SQ109 analogues against Mycobacterium tuberculosis and M. smegmatis, in addition to determining their uncoupling activity. We then investigated potential protein targets, involved in quinone and cell wall biosynthesis, using "rescue" experiments. There was little effect of menaquinone on growth inhibition by SQ109, but there were large increases in the IC50 of SQ109 and its analogues (up to 20×) on addition of undecaprenyl phosphate (Up), a homologue of the mycobacterial decaprenyl (C50) diphosphate. Inhibition of an undecaprenyl diphosphate phosphatase, an ortholog of the mycobacterial phosphatase, correlated with cell growth inhibition, and we found that M. smegmatis cell growth inhibition could be well predicted by using uncoupler and Up-rescue results. We also investigated whether SQ109 was metabolized inside Mycobacterium tuberculosis, finding only a single metabolite, previously shown to be inactive. The results are of general interest since they help explain the mechanism of SQ109 in mycobacteria.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/metabolismo , Difosfatos/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Mycobacterium smegmatis
9.
Angew Chem Int Ed Engl ; 62(21): e202301258, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36940280

RESUMEN

Suitably configured allyl ethers of unsaturated cyclitols act as substrates of ß-glycosidases, reacting via allylic cation transition states. Incorporation of halogens at the vinylic position of these carbasugars, along with an activated leaving group, generates potent inactivators of ß-glycosidases. Enzymatic turnover of these halogenated cyclitols (F, Cl, Br) displayed a counter-intuitive trend wherein the most electronegative substituents yielded the most labile pseudo-glycosidic linkages. Structures of complexes with the Sulfolobus ß-glucosidase revealed similar enzyme-ligand interactions to those seen in complexes with a 2-fluorosugar inhibitor, the lone exception being displacement of tyrosine 322 from the active site by the halogen. Mutation of Y322 to Y322F largely abolished glycosidase activity, consistent with lost interactions at O5, but minimally affected (7-fold) rates of carbasugar hydrolysis, yielding a more selective enzyme for unsaturated cyclitol ether hydrolysis.


Asunto(s)
Ciclitoles , Ciclitoles/química , Glicósido Hidrolasas/metabolismo , Glicósidos , Dominio Catalítico , Inhibidores Enzimáticos/farmacología
10.
J Chem Inf Model ; 63(7): 2158-2169, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36930801

RESUMEN

The rapid global spread of the SARS-CoV-2 virus facilitated the development of novel direct-acting antiviral agents (DAAs). The papain-like protease (PLpro) has been proposed as one of the major SARS-CoV-2 targets for DAAs due to its dual role in processing viral proteins and facilitating the host's immune suppression. This dual role makes identifying small molecules that can effectively neutralize SARS-CoV-2 PLpro activity a high-priority task. However, PLpro drug discovery faces a significant challenge due to the high mobility and induced-fit effects in the protease's active site. Herein, we virtually screened the ZINC20 database with Deep Docking (DD) to identify prospective noncovalent PLpro binders and combined ultra-large consensus docking with two pharmacophore (ph4)-filtering strategies. The analysis of active compounds revealed their somewhat-limited diversity, likely attributed to the induced-fit nature of PLpro's active site in the crystal structures, and therefore, the use of rigid docking protocols poses inherited limitations. The top hits were assessed against recombinant viral proteins and live viruses, demonstrating desirable inhibitory activities. The best compound VPC-300195 (IC50: 15 µM) ranks among the top noncovalent PLpro inhibitors discovered through in silico methodologies. In the search for novel SARS-CoV-2 PLpro-specific chemotypes, the identified inhibitors could serve as diverse templates for the development of effective noncovalent PLpro inhibitors.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Modelos Moleculares , Estudios Prospectivos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Proteínas Virales/química , Péptido Hidrolasas
11.
Nat Commun ; 14(1): 1394, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914633

RESUMEN

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico
12.
Nature ; 613(7943): 375-382, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599987

RESUMEN

Broad-spectrum ß-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses ß-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (ß-lactamase PC1) and mecA (ß-lactam-resistant cell-wall transpeptidase PBP2a) expression3-7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1-the wild type and an autocleavage-deficient F284A mutant, with or without ß-lactam-reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from ß-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action-in this case, antibiotic resistance-through the direct cleavage of a repressor.


Asunto(s)
Antibacterianos , Staphylococcus aureus , Resistencia betalactámica , beta-Lactamas , Humanos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Resistencia betalactámica/efectos de los fármacos , beta-Lactamas/química , beta-Lactamas/farmacología , Microscopía por Crioelectrón , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo
13.
Nat Commun ; 13(1): 5196, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057636

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes COVID-19, produces polyproteins 1a and 1ab that contain, respectively, 11 or 16 non-structural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for viral assembly and maturation. Using C-terminally substituted Mpro chimeras, we have determined X-ray crystallographic structures of Mpro in complex with 10 of its 11 viral cleavage sites, bound at full occupancy intermolecularly in trans, within the active site of either the native enzyme and/or a catalytic mutant (C145A). Capture of both acyl-enzyme intermediate and product-like complex forms of a P2(Leu) substrate in the native active site provides direct comparative characterization of these mechanistic steps as well as further informs the basis for enhanced product release of Mpro's own unique C-terminal P2(Phe) cleavage site to prevent autoinhibition. We characterize the underlying noncovalent interactions governing binding and specificity for this diverse set of substrates, showing remarkable plasticity for subsites beyond the anchoring P1(Gln)-P2(Leu/Val/Phe), representing together a near complete analysis of a multiprocessing viral protease. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for antiviral therapeutic development.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus/metabolismo , Poliproteínas , SARS-CoV-2/fisiología , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas , Poliproteínas/química , Proteínas Virales/química , Rayos X
14.
Inorg Chem ; 61(14): 5563-5571, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35347989

RESUMEN

The interplay between the primary and secondary coordination spheres in biological metal sites plays an essential role in controlling their properties. Some of the clearest examples of this are from copper sites in blue and purple copper proteins. Many such proteins contain methionine (Met) in the primary coordination sphere as a weakly bound ligand to Cu. While the effects of replacing the coordinated Met are understood, less so is the importance of its second-sphere interactions. In this combined informatics and experimental study, we first present a bioinformatics investigation of the second-sphere environments in biological Met-Cu motifs. The most common interaction is between the Met-CH3 and the π-face of a phenylalanine (Phe) (81% of surveyed structures), tyrosine (Tyr) (11%), and tryptophan (Trp) (8%). In most cases, the Met-CH3 also forms a contact with a π-face of one of a Cu-ligating histidine-imidazole. Such interactions are widely distributed in different Cu proteins. Second, to explore the impact of the second-sphere interactions of Met, a series of artificial Pseudomonas aeruginosa azurin proteins were produced where the native Phe15 was replaced with Tyr or Trp. The proteins were characterized using optical and magnetic resonance spectroscopies, X-ray diffraction, electrochemistry, and an investigation of the time-resolved electron-transfer kinetics of photosensitizer-modified proteins. The influence of the Cu-Met-Aro interaction on azurin's physical properties is subtle, and the hallmarks of the azurin blue copper site are maintained. In the Phe15Trp variant, the mutation to Phe15 induces changes in Cu properties that are comparable to replacement of the weak Met ligand. The broader impacts of these widely distributed interactions are discussed.


Asunto(s)
Azurina , Azurina/química , Cobre/química , Ligandos , Metionina/química , Modelos Moleculares , Proteínas , Triptófano/química , Tirosina/química
15.
J Virol ; 96(5): e0133021, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019716

RESUMEN

All viruses must usurp host ribosomes for viral protein synthesis. Dicistroviruses utilize an intergenic region internal ribosome entry site (IGR IRES) to directly recruit ribosomes and mediate translation initiation from a non-AUG start codon. The IGR IRES adopts a three-pseudoknot structure that comprises a ribosome binding domain of pseudoknot II and III (PKII and PKIII), and a tRNA-like anticodon domain (PKI) connected via a short, one to three nucleotide hinge region. Recent cryo-EM structural analysis of the dicistrovirus Taura syndrome virus (TSV) IGR IRES bound to the ribosome suggests that the hinge region may facilitate translocation of the IRES from the ribosomal A to P site. In this study, we provide mechanistic and functional insights into the role of the hinge region in IGR IRES translation. Using the honeybee dicistrovirus, Israeli acute paralysis virus (IAPV), as a model, we demonstrate that mutations of the hinge region resulted in decreased IRES-dependent translation in vitro. Toeprinting primer extension analysis of mutant IRESs bound to purified ribosomes and in rabbit reticulocyte lysates showed defects in the initial ribosome positioning on the IRES. Finally, using a hybrid dicistrovirus clone, mutations in the hinge region of the IAPV IRES resulted in decreased viral yield. Our work reveals an unexpected role of the hinge region of the dicistrovirus IGR IRES coordinating the two independently folded domains of the IRES to properly position the ribosome to start translation. IMPORTANCE Viruses must use the host cell machinery to direct viral protein expression for productive infection. One such mechanism is an internal ribosome entry site that can directly recruit host cell machinery. In this study, we have identified a novel sequence in an IRES that provides insight into the mechanism of viral gene expression. Specifically, this novel sequence promotes viral IRES activity by directly guiding the host cell machinery to start gene expression at a specific site.


Asunto(s)
Dicistroviridae , Sitios Internos de Entrada al Ribosoma , Virosis , Virus , Animales , Dicistroviridae/genética , Dicistroviridae/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Mutación , Biosíntesis de Proteínas , Conejos , Ribosomas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virosis/metabolismo , Virosis/virología , Virus/genética
16.
Glycobiology ; 32(2): 162-170, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34792586

RESUMEN

Propionibacterium acnes, though generally considered part of the normal flora of human skin, is an opportunistic pathogen associated with acne vulgaris as well as other diseases, including endocarditis, endophthalmitis and prosthetic joint infections. Its virulence potential is also supported by knowledge gained from its sequenced genome. Indeed, a vaccine targeting a putative cell wall-anchored P. acnes sialidase has been shown to suppress cytotoxicity and pro-inflammatory cytokine release induced by the organism, and is proposed as an alternative treatment for P. acnes-associated diseases. Here, we report the crystal structures of the surface sialidase and its complex with the transition-state mimic Neu5Ac2en. Our structural and kinetic analyses, together with insight from a glycan array screen, which probes subtle specificities of the sialidase for α-2,3-sialosides, provide a basis for the structure-based design of novel small-molecule therapeutics against P. acnes infections.


Asunto(s)
Acné Vulgar , Propionibacterium acnes , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Humanos , Neuraminidasa , Piel
17.
J Med Chem ; 64(18): 13540-13550, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34473495

RESUMEN

The polyprenyl lipid undecaprenyl phosphate (C55P) is the universal carrier lipid for the biosynthesis of bacterial cell wall polymers. C55P is synthesized in its pyrophosphate form by undecaprenyl pyrophosphate synthase (UppS), an essential cis-prenyltransferase that is an attractive target for antibiotic development. We previously identified a compound (MAC-0547630) that showed promise as a novel class of inhibitor and an ability to potentiate ß-lactam antibiotics. Here, we provide a structural model for MAC-0547630's inhibition of UppS and a structural rationale for its enhanced effect on UppS from Bacillus subtilis versus Staphylococcus aureus. We also describe the synthesis of a MAC-0547630 derivative (JPD447), show that it too can potentiate ß-lactam antibiotics, and provide a structural rationale for its improved potentiation. Finally, we present an improved structural model of clomiphene's inhibition of UppS. Taken together, our data provide a foundation for structure-guided drug design of more potent UppS inhibitors in the future.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/metabolismo , Transferasas Alquil y Aril/química , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Staphylococcus aureus Resistente a Meticilina/enzimología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
18.
J Antimicrob Chemother ; 76(9): 2268-2272, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34151961

RESUMEN

BACKGROUND: PBP4, a low-molecular-weight PBP in Staphylococcus aureus, is not considered to be a classical mediator of ß-lactam resistance. Previous studies carried out by our group with laboratory strains of S. aureus demonstrated the ability of PBP4 to produce ß-lactam resistance through mutations associated with the pbp4 promoter and/or gene. Recent studies of ß-lactam-resistant clinical isolates of S. aureus have reported similar mutations associated with pbp4. OBJECTIVES: To determine if pbp4-associated mutations reported among clinical strains of S. aureus mediate ß-lactam resistance. METHODS: The pbp4 promoters and genes bearing mutations from clinical isolates were cloned into a heterologous host. Reporter, growth and Bocillin assays were performed to assess their role in ß-lactam resistance. X-ray crystallography was used to obtain acyl-enzyme intermediate structures of the WT and mutant PBP4 with nafcillin and cefoxitin. RESULTS: Of the five strains that contained pbp4 promoter mutations, three strains exhibited enhanced expression of PBP4. The R200L mutation in pbp4 resulted in increased survival in the presence of the ß-lactams nafcillin and cefoxitin. Further, introduction of either a promoter or a gene mutation into the genome of a WT host increased the ability of the strains to resist the action of ß-lactams. The four high-resolution X-ray structures presented demonstrate the binding pose of the ß-lactams tested and provide hints for further drug development. CONCLUSIONS: Mutations associated with the pbp4 promoter and pbp4 gene altered protein activity and mediated ß-lactam resistance among the clinically isolated strains that were studied.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/genética , Staphylococcus aureus/genética , Resistencia betalactámica , beta-Lactamas/farmacología
19.
Nat Commun ; 12(1): 2775, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986273

RESUMEN

The pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of ß-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic. PBP1b, in its apo form, is seen to exhibit a distinct conformation in comparison to Moenomycin-bound crystal structures. The work herein paves the way for the use of cryoEM in structure-guided antibiotic development for this notoriously difficult to crystalize class of proteins and their complex substrates.


Asunto(s)
Antibacterianos/farmacología , Pared Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , beta-Lactamas/farmacología , Acetilglucosamina/química , Aldehídos/química , Microscopía por Crioelectrón , Ácidos Murámicos/química , Oligosacáridos/farmacología , Peptidoglicano/biosíntesis , Conformación Proteica , Dominios Proteicos/fisiología
20.
J Struct Biol ; 213(2): 107733, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33819634

RESUMEN

The cell wall of many pathogenic Gram-positive bacteria contains ribitol-phosphate wall teichoic acid (WTA), a polymer that is linked to virulence and regulation of essential physiological processes including cell division. CDP-ribitol, the activated precursor for ribitol-phosphate polymerization, is synthesized by a cytidylyltransferase and reductase pair known as TarI and TarJ, respectively. In this study, we present crystal structures of Staphylococcus aureus TarI and TarJ in their apo forms and in complex with substrates and products. The TarI structures illustrate the mechanism of CDP-ribitol synthesis from CTP and ribitol-phosphate and reveal structural changes required for substrate binding and catalysis. Insights into the upstream step of ribulose-phosphate reduction to ribitol-phosphate is provided by the structures of TarJ. Furthermore, we propose a general topology of the enzymes in a heterotetrameric form built using restraints from crosslinking mass spectrometry analysis. Together, our data present molecular details of CDP-ribitol production that may aid in the design of inhibitors against WTA biosynthesis.


Asunto(s)
Azúcares de Nucleósido Difosfato/biosíntesis , Nucleotidiltransferasas/química , Oxidorreductasas/química , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Pared Celular/metabolismo , Cristalografía por Rayos X , Espectrometría de Masas/métodos , Modelos Moleculares , Mutación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Oxidorreductasas/metabolismo , Pentosafosfatos/metabolismo , Multimerización de Proteína , Ribulosafosfatos/metabolismo , Staphylococcus aureus/citología , Staphylococcus aureus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA