Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(27): 18036-18045, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916252

RESUMEN

Cation exchange is a versatile method for modifying the material composition and properties of nanostructures. However, control of the degree of exchange and material properties is difficult at the single-particle level. Successive cation exchange from CdSe to Ag2Se has been utilized here on the same individual nanowires to monitor the change of electronic properties in field-effect transistor devices. The transistors were fabricated by direct synthesis of CdSe nanowires on prepatterned substrates followed by optical lithography. The devices were then subjected to cation exchange by submerging them in an exchange solution containing silver nitrate. By removal of the devices from solution and probing the electrical transport properties at different times, the change in electronic properties of individual nanowires could be monitored throughout the entire exchange reaction from CdSe to Ag2Se. Transistor characterization revealed that the electrical conductivity can be tuned by up to 8 orders of magnitude and the charge-carrier mobility by 7 orders of magnitude. While analysis of the material composition by energy dispersive X-ray spectroscopy confirmed successful cation exchange from CdSe to Ag2Se, X-ray fluorescence spectroscopy proved that cation exchange also took place below the contacts. The method presented here demonstrates an efficient way to tune the material composition and access the resulting properties nondestructively at the single-particle level. This approach can be readily applied to many other material systems and can be used to study the electrical properties of nanostructures as a function of material composition or to optimize nanostructure-based devices after fabrication.

2.
Small Methods ; : e2301610, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693080

RESUMEN

Single impurities in insulators are now often used for quantum sensors and single photon sources, while nanoscale semiconductor doping features are being constructed for electrical contacts in quantum technology devices, implying that new methods for sensitive, non-destructive imaging of single- or few-atom structures are needed. X-ray fluorescence (XRF) can provide nanoscale imaging with chemical specificity, and features comprising as few as 100 000 atoms have been detected without any need for specialized or destructive sample preparation. Presently, the ultimate limits of sensitivity of XRF are unknown - here, gallium dopants in silicon are investigated using a high brilliance, synchrotron source collimated to a small spot. It is demonstrated that with a single-pixel integration time of 1 s, the sensitivity is sufficient to identify a single isolated feature of only 3000 Ga impurities (a mass of just 350 zg). With increased integration (25 s), 650 impurities can be detected. The results are quantified using a calibration sample consisting of precisely controlled numbers of implanted atoms in nanometer-sized structures. The results show that such features can now be mapped quantitatively when calibration samples are used, and suggest that, in the near future, planned upgrades to XRF facilities might achieve single-atom sensitivity.

3.
Adv Sci (Weinh) ; 11(2): e2301873, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009788

RESUMEN

Small voids in the absorber layer of thin-film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample-preparation artifacts. Here, synchrotron imaging is performed on a fully operational as-deposited solar cell containing a few tens of voids. By measuring operando current and X-ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material-deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance.

4.
J Synchrotron Radiat ; 29(Pt 6): 1407-1413, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345748

RESUMEN

X-ray diffraction with high spatial resolution is commonly used to characterize (poly)crystalline samples with, for example, respect to local strain, residual stress, grain boundaries and texture. However, the investigation of highly absorbing samples or the simultaneous assessment of high-Z materials by X-ray fluorescence have been limited due to the utilization of low photon energies. Here, a goniometer-based setup implemented at the P06 beamline of PETRA III that allows for micrometre spatial resolution with a photon energy of 35 keV and above is reported. A highly focused beam was achieved by using compound refractive lenses, and high-precision sample manipulation was enabled by a goniometer that allows up to 5D scans (three rotations and two translations). As experimental examples, the determination of local strain variations in martensitic steel samples with micrometre spatial resolution, as well as the simultaneous elemental distribution for high-Z materials in a thin-film solar cell, are demonstrated. The proposed approach allows users from the materials-science community to determine micro-structural properties even in highly absorbing samples.

5.
Opt Express ; 30(18): 31519-31529, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242232

RESUMEN

Diffraction-limited hard X-ray optics are key components for high-resolution microscopy, in particular for upcoming synchrotron radiation sources with ultra-low emittance. Diffractive optics like multilayer Laue lenses (MLL) have the potential to reach unprecedented numerical apertures (NA) when used in a crossed geometry of two one-dimensionally focusing lenses. However, minuscule fluctuations in the manufacturing process and technical limitations for high NA X-ray lenses can prevent a diffraction-limited performance. We present a method to overcome these challenges with a tailor-made refractive phase plate. With at-wavelength metrology and a rapid prototyping approach we demonstrate aberration correction for a crossed pair of MLL, improving the Strehl ratio from 0.41(2) to 0.81(4) at a numerical aperture of 3.3 × 10-3. This highly adaptable aberration-correction scheme provides an important tool for diffraction-limited hard X-ray focusing.

6.
Rev Sci Instrum ; 93(6): 065113, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778008

RESUMEN

It is widely accepted that micro- and nanoscale inhomogeneities govern the performance of many thin-film solar cell absorbers. These inhomogeneities yield material properties (e.g., composition, structure, and charge collection) that are challenging to correlate across length scales and measurement modalities. The challenge is compounded if a correlation is sought during device operation or in conditions that mimic aging under particular stressors (e.g., heat and electrical bias). Correlative approaches, particularly those based on synchrotron x-ray sources, are powerful since they can access several material properties in different modes (e.g., fluorescence, diffraction, and absorption) with minimal sample preparation. Small-scale laboratory x-ray instruments have begun to offer multi-modality but are typically limited by low x-ray photon flux, low spatial resolution, or specific sample sizes. To overcome these limitations, a characterization stage was developed to enable multi-scale, multi-modal operando measurements of industrially relevant photovoltaic devices. The stage offers compatibility across synchrotron x-ray facilities, enabling correlation between nanoscale x-ray fluorescence microscopy, microscale x-ray diffraction microscopy, and x-ray beam induced current microscopy, among others. The stage can accommodate device sizes up to 25 × 25 mm2, offering access to multiple regions of interest and increasing the statistical significance of correlated properties. The stage materials can sustain humid and non-oxidizing atmospheres, and temperature ranges encountered by photovoltaic devices in operational environments (e.g., from 25 to 100 °C). As a case study, we discuss the functionality of the stage by studying Se-alloyed CdTe photovoltaic devices aged in the stage between 25 and 100 °C.

7.
Faraday Discuss ; 239(0): 160-179, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35822496

RESUMEN

We report a multi-modal study of the electrical, chemical and structural properties of a kesterite thin-film solar cell by combining the spatially-resolved X-ray beam induced current and fluorescence imaging techniques for the evaluation of a fully functional device on a cross-section. The data allowed the correlation of the chemical composition, defects at interfaces and inhomogeneous deposition of the layers with the local charge-collection efficiency of the device. We support our observations with Monte Carlo simulations of high-energy X-ray interactions with the semiconductor device, and finite-volume modeling of the charge-collection efficiency.

9.
Materials (Basel) ; 14(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466442

RESUMEN

Inhomogeneities and defects often limit the overall performance of thin-film solar cells. Therefore, sophisticated microscopy approaches are sought to characterize performance and defects at the nanoscale. Here, we demonstrate, for the first time, the simultaneous assessment of composition, structure, and performance in four-fold multi-modality. Using scanning X-ray microscopy of a Cu(In,Ga)Se2 (CIGS) solar cell, we measured the elemental distribution of the key absorber elements, the electrical and optical response, and the phase shift of the coherent X-rays with nanoscale resolution. We found structural features in the absorber layer-interpreted as voids-that correlate with poor electrical performance and point towards defects that limit the overall solar cell efficiency.

10.
J Appl Crystallogr ; 53(Pt 4): 957-971, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32788903

RESUMEN

Ptychographic X-ray imaging at the highest spatial resolution requires an optimal experimental environment, providing a high coherent flux, excellent mechanical stability and a low background in the measured data. This requires, for example, a stable performance of all optical components along the entire beam path, high temperature stability, a robust sample and optics tracking system, and a scatter-free environment. This contribution summarizes the efforts along these lines to transform the nanoprobe station on beamline P06 (PETRA III) into the ptychographic nano-analytical microscope (PtyNAMi).

11.
J Vis Exp ; (150)2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31498310

RESUMEN

X-ray beam induced current (XBIC) measurements allow mapping of the nanoscale performance of electronic devices such as solar cells. Ideally, XBIC is employed simultaneously with other techniques within a multi-modal X-ray microscopy approach. An example is given herein combining XBIC with X-ray fluorescence to enable point-by-point correlations of the electrical performance with chemical composition. For the highest signal-to-noise ratio in XBIC measurements, lock-in amplification plays a crucial role. By this approach, the X-ray beam is modulated by an optical chopper upstream of the sample. The modulated X-ray beam induced electrical signal is amplified and demodulated to the chopper frequency using a lock-in amplifier. By optimizing low-pass filter settings, modulation frequency, and amplification amplitudes, noise can efficiently be suppressed for the extraction of a clear XBIC signal. A similar setup can be used to measure the X-ray beam induced voltage (XBIV). Beyond standard XBIC/XBIV measurements, XBIC can be measured with bias light or bias voltage applied such that outdoor working conditions of solar cells can be reproduced during in-situ and operando measurements. Ultimately, the multi-modal and multi-dimensional evaluation of electronic devices at the nanoscale enables new insights into the complex dependencies between composition, structure, and performance, which is an important step towards solving the materials' paradigm.


Asunto(s)
Amplificadores Electrónicos , Suministros de Energía Eléctrica , Microscopía/métodos , Relación Señal-Ruido , Energía Solar , Microscopía/instrumentación , Rayos X
12.
J Vis Exp ; (132)2018 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-29553551

RESUMEN

The quantification of X-ray fluorescence (XRF) microscopy maps by fitting the raw spectra to a known standard is crucial for evaluating chemical composition and elemental distribution within a material. Synchrotron-based XRF has become an integral characterization technique for a variety of research topics, particularly due to its non-destructive nature and its high sensitivity. Today, synchrotrons can acquire fluorescence data at spatial resolutions well below a micron, allowing for the evaluation of compositional variations at the nanoscale. Through proper quantification, it is then possible to obtain an in-depth, high-resolution understanding of elemental segregation, stoichiometric relationships, and clustering behavior. This article explains how to use the MAPS fitting software developed by Argonne National Laboratory for the quantification of full 2-D XRF maps. We use as an example results from a Cu(In,Ga)Se2 solar cell, taken at the Advanced Photon Source beamline 2-ID-D at Argonne National Laboratory. We show the standard procedure for fitting raw data, demonstrate how to evaluate the quality of a fit and present the typical outputs generated by the program. In addition, we discuss in this manuscript certain software limitations and offer suggestions for how to further correct the data to be numerically accurate and representative of spatially resolved, elemental concentrations.


Asunto(s)
Fluorescencia , Microscopía/métodos , Espectrometría por Rayos X/métodos
13.
J Synchrotron Radiat ; 24(Pt 1): 288-295, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009569

RESUMEN

The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer-Lambert's law, formulae are presented in a general integral form and numerically applicable framework. The procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.

14.
ACS Appl Mater Interfaces ; 8(24): 15169-76, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27227369

RESUMEN

While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

15.
J Phys Chem Lett ; 6(1): 66-71, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-26263093

RESUMEN

The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.

16.
Nano Lett ; 14(9): 5085-91, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25102168

RESUMEN

We demonstrate self-patterned insulating nanoparticle layers to define local electrical interconnects in thin-film electronic devices. We show this with thin-film silicon tandem solar cells, where we introduce between the two component cells a solution-processed SiO2 nanoparticle layer with local openings to allow for charge transport. Because of its low refractive index, high transparency, and smooth surface, the SiO2 nanoparticle layer acts as an excellent intermediate reflector allowing for efficient light management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA